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Preface

The dominant narrative in 2024-2026 was exponential progress toward artificial general intelligence within a
decade. This book measures the distance to that goal, identifies the constraints that bind, and projects what
we will actually achieve.

The approach is simple: measure how much computation nature spent to produce general intelligence, measure
how much computation we are spending on Al, identify the constraints that prevent closing the gap, and
trace where efficiency improvements lead when capability scaling stalls.

The evidence suggests we will not reach AGI on the current path. Frontier capabilities stagnate at “impressively
competent within distribution, fragile outside.” But while capability scaling fails, efficiency explodes: GPT-4
quality moves from datacenters to laptops, then smartphones, then all devices.
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Chapter 1

From chaos to cognition

“Nothing in biology makes sense except in the light of evolution.” — Theodosius Dobzhansky

1.1 The computational observation

We have exactly one confirmed example of general intelligence in the known universe. Not one architecture,
not one algorithm: one entire process. It spans roughly 3.8 billion years of evolution, operating across trillions
of organisms in parallel, each testing a slightly different strategy against the hard constraints of a physical
world. Before we debate whether machines can think, we should ask the more elementary question: how
much did the only known solution cost?

This chapter attempts an answer. Specifically, we want to measure the computational distance from a state
of high cognitive entropy, where no organism reasons, plans, or models the world, to the low-entropy state
where general intelligence emerges. Not the cost of building the machinery that makes cognition possible, the
molecular substrates, the basic neural wiring, but the cost of the journey itself.

We will estimate this distance in learning instances: cycles of interaction between organisms and their
environment from which adaptive information was extracted. The number we arrive at is large. It may also
be wrong by several orders of magnitude in either direction. Let us be honest about that from the start: this
estimate is impossible to get right. The organisms are dead, the environments are gone, and the quantities we
need were never measured directly. What we can do is assemble the best numbers that biology, neuroscience,
and ecology have produced, chain them together carefully, and see where they land.

Our prediction is that traversing this distance required between 10?° and 10%° learning instances, depending
on how much of evolution’s work we classify as “building machinery” versus “making the journey.” As we will
show, the largest artificial training runs, measured in comparable units, have performed roughly 107. The
gap demands explanation.

1.2 The ground rules

Throughout this estimate, and throughout this book, we adopt a single methodological principle: when in
doubt, choose the number that makes the gap smaller. Every uncertain parameter is resolved in
favor of the optimist. Every ambiguous definition is read in the way most generous to current Al. If, after all
this generosity, the remaining gap is still large, the argument is strengthened precisely because we did not
inflate it.

This is a lower bound argument. We are not trying to prove that AGI is impossible. We are trying to find the
floor: the smallest defensible estimate of what nature spent, using every reasonable discount and concession.
If that floor is still far above what artificial systems have achieved, we have learned something important.
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1.3 What are we counting?

The tempting metric is synaptic operations: count every time a neuron fires, across every organism, across
all of evolutionary time. But this overcounts in a way that distorts the picture. A lizard basking on a rock
for an hour has neurons firing continuously, maintaining homeostasis, regulating body temperature, keeping
its heart beating. Very little of that activity constitutes learning. If we want to know what it would cost
to replicate evolution’s achievement in silicon, raw neural firing is not the right unit. We do not need to
simulate a lizard’s heartbeat.

The unit we want is a learning instance: a cycle of interaction between an organism and its environment
from which adaptive information can be extracted. For an organism with a nervous system, this means a
meaningful encounter: a predator detected, a food source located, a mate assessed, a threat survived or not
survived. For a bacterium, which has no neurons at all, the learning instance is a generation in which a
genuinely novel genetic variant is tested against the environment: a new mutation expressed, a new strategy
tried, an outcome recorded by natural selection.

This is what we would actually need to replicate. Not the idle hum of a billion neural circuits, but the moments
where organism meets world and something is at stake. The failed experiments count too: evolution has no
foresight, and an organism that dies in infancy is as much a data point as one that reproduces. A genetic
algorithm does not get to subtract the fitness evaluations of discarded candidates from its computational
budget.

We split the estimate into three tiers: the long pre-neural era dominated by microbial life, the neural era
beginning with the Cambrian explosion roughly 500 million years ago and dominated by invertebrates, and
the relatively brief era of vertebrate sophistication.

1.4 Tier 1: The microbial foundation

Life originated approximately 3.8 billion years ago. For the first 3.3 billion years, until the Cambrian explosion
roughly 500 million years ago, Earth was dominated by bacteria and archaea: organisms with no nervous
systems, no neurons, no synapses. They could not learn within their lifetimes in any neural sense. They
executed their genetic programs and either divided or died.

Yet this era was not computationally idle. It was, by any measure, the most prolific optimization process in
Earth’s history. The molecular machinery that neurons would later use, the entire signaling and communication
infrastructure of neural computation, was forged during this period through the brute trial and error of
microbial evolution.

Timeline:

T, = 3.3 x 109 years x 3.15 x 107 s/year ~ 1.04 x 10'7 s

Population: Whitman, Coleman, and Wiebe estimated in their landmark 1998 census that the number
of prokaryotic cells alive on Earth at any given time is approximately 4-6 x 103°. Bar-On and colleagues
revisited global biomass in 2018 and broadly confirmed the order of magnitude. We use 103°.

Learning rate: Here we apply our first optimistic discount. A bacterium divides, on average, every few
hours. We use 7 &~ 10* seconds (roughly three hours) as a reasonable mean across species and conditions.
But most divisions produce offspring nearly identical to the parent. The “learning” happens only when a
genuinely novel variant is tested: a new mutation expressed against the environment. Drake’s foundational
work on mutation rates established that bacteria mutate at approximately p ~ 0.003 mutations per genome
per generation, a figure that has held up across decades of subsequent measurement. We count only these
novel-variant generations:

0.003
R1 == B ==

= Tor = 3 x 1077 instances/s/organism
~
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Subtotal:

Q, =Ny, xRy xT; =10% x 3 x 1077 x 1.04 x 10'7

0, ~ 3 x10%°

Three followed by forty zeros. We will verify this number shortly.

1.5 Tier 2: The invertebrate era

The Cambrian explosion, roughly 500 million years ago, marks the appearance of nervous systems in the
fossil record. From this point forward, organisms could learn within their own lifetimes: adjusting behavior
in response to experience, not merely across generations through genetic variation.

Timeline:

T, = 500 x 10° years x 3.15 x 107 s/year ~ 1.58 x 10%¢ s

Population: The number of animals with nervous systems alive at any time is dominated by invertebrates.
Nematodes alone number in the hundreds of trillions. The Entomological Society of America and the
Smithsonian estimate roughly 10'° individual insects alive at any given time, a figure consistent with
Williams’s earlier census work. Fish, amphibians, reptiles, birds, and mammals are rounding errors against
this population.

N, ~ 10! organisms

Learning rate: This is the hardest parameter in the estimate. How often does the average invertebrate
encounter a genuinely novel stimulus, one that triggers actual learning rather than habituated routine? No
one has measured this directly in the wild. But we can triangulate from the species whose learning has been
studied most carefully, then ask what the population-weighted average should be.

Menzel and colleagues documented that foraging honeybees learn and retain flower colors, shapes, scents,
locations, reward quality, time-of-day patterns, navigation landmarks, and routes. A forager makes 10 to
15 trips per day and accumulates this repertoire, hundreds of distinct learned items, over roughly three
weeks of active foraging. That implies roughly 10 to 15 novel learned associations per day. The nematode C.
elegans, with only 302 neurons, demonstrates habituation, sensitization, and associative learning across its
two-to-three-week lifetime, as documented by Rankin and others; back-calculating from its known behavioral
repertoire yields a comparable rate of roughly 7 to 14 learned items per day. Drosophila shows robust
associative conditioning in the lab, with synaptic plasticity in the mushroom body operating on timescales of
tens of seconds, though the ecological relevance of this rate in the wild remains debated.

These are the best-studied invertebrate learners, and they converge on roughly 10 novel learning events per
day during active life. The 10" population is dominated by insects, so the population-weighted average is
driven by insect learning rates. Ten per day sits at the conservative end of what the data from studied species
suggests:

10
R, = ——— ~ 10~* instances/s/organism
27 86400 /sforg
We can sanity-check this against structural data. Neurons connect to each other through synapses, and
most excitatory synapses in the brain sit on tiny protrusions called dendritic spines. When the brain learns,
spines grow, shrink, appear, and disappear; the rate at which this happens, spine turnover, is the most direct
measurable proxy for learning-related synaptic change. Pfeiffer and colleagues measured roughly 10% spine
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turnover per day in the mouse hippocampus. Trachtenberg and colleagues found roughly 0.5 to 1% per day
in the mouse cortex. For a typical invertebrate with 10* to 107 synapses and a turnover rate in this range,
we would expect roughly 10! to 10* individual spine changes per day. At ten learning instances per day, that
implies roughly 1 to 1,000 spine changes per learning instance: a single episode of learning rewiring a handful
to a thousand synapses. This is consistent with what neuroscience observes for associative learning in small
nervous systems.

Subtotal:

0y = Ny x Ry x Ty = 1019 x 1074 x 1.58 x 1016

Q, ~ 1031

1.6 Tier 3: The vertebrate refinement

Vertebrates learn more per individual than any invertebrate. A crow solving a novel puzzle, a rat navigating
a maze, a dolphin coordinating a hunt: these are learning-dense lives. But vertebrate populations are tiny
compared to invertebrates, and they arrived late. The first vertebrates, small jawless filter-feeders, appear in
the Cambrian fossil record roughly 525 million years ago, but they did not diversify substantially until the
Devonian. We generously credit them with the full post-Cambrian timeline.

Timeline:

Ty ~ 1.58 x 10'0 s

Population: Callaghan, Nakagawa, and Cornwell estimated roughly 50 billion wild birds alive at any
given time. Greenspoon and colleagues at the Weizmann Institute estimated approximately 130 billion wild
mammals, dominated by bats (roughly 56 billion) and rodents (roughly 25 billion). Reptile and amphibian
populations are less precisely known but on the order of 10'!. Fish dominate: estimates range from one to
three trillion individuals, depending on assumptions about mesopelagic species. We use the conservative
lower bound:

N3 ~ 10'? organisms

Fish outnumber all other vertebrates combined by roughly an order of magnitude. The population-weighted
average vertebrate is a fish.

Learning rate: As with invertebrates, we triangulate from the species whose learning has been most carefully
documented, then ask what the population-weighted average should be.

Fish are capable of rapid, flexible learning. Blank and colleagues showed that adult zebrafish form NMDA-
dependent long-term memories from a single aversive experience: one-trial inhibitory avoidance. Rodriguez
and others documented that goldfish learn spatial tasks in four-arm mazes, using both place-based and
cue-based strategies, and can take spontaneous shortcuts suggesting map-like spatial representations. In the
wild, a fish navigates its territory, locates food, avoids predators, and interacts with conspecifics. How many
of these encounters constitute genuinely novel learning? For a schooling pelagic fish whose daily routine is
largely repetitive, the number is modest: perhaps a few dozen per day. For an actively foraging territorial
species, it may reach the low hundreds.

Among birds, the food-caching corvids and parids provide the most striking quantitative data. Balda and
Kamil documented that a single Clark’s nutcracker caches 22,000 to 33,000 pine seeds across 5,000 to 6,000
distinct locations during autumn, recovering them with high accuracy up to 285 days later: roughly 100 to 200
novel spatial memories per day during the caching season. Applegate and Aronov showed that black-capped
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chickadees cache hundreds of food items daily, each in a unique site that generates a distinct hippocampal
firing pattern. These are exceptional species, not typical vertebrates, but they demonstrate the ceiling of
vertebrate individual learning capacity.

Among mammals, O’Keefe and Dostrovsky’s discovery of hippocampal place cells established that rodents
form new spatial representations within seconds of entering a novel environment: a single pass through a
new location is sufficient to generate a stable place field. Fear conditioning is reliably one-trial: a single
aversive event produces long-term contextual memory. But the 130 billion wild mammals are dominated by
bats and small rodents, whose daily learning budgets in their natural habitats are far below these laboratory
demonstrations of capacity.

The population is dominated by fish, and the population-weighted average is driven by fish learning rates.
We estimate roughly 100 novel learning events per day for the average vertebrate: an order of magnitude
above the invertebrate rate, reflecting greater neural complexity, but discounting for the fact that most fish
and small mammals spend much of their time in repetitive behavioral routines:

100

R,= —— =~
3786400

1073 instances/s/organism

Subtotal:

Q3 = N3 x Ry x Ty =10'2 x 1073 x 1.58 x 10'¢

Qg ~ 10%

Even if we raise the learning rate by an order of magnitude, to a thousand novel events per day (consistent
with what caching birds and actively exploring rodents achieve), the total reaches only 102¢. The population
deficit is decisive: 10'2 vertebrates cannot overcome a 10'°-strong invertebrate population, regardless of how
much more each individual learns. Vertebrates matter enormously for the quality of intelligence that evolution
produced, but they are a rounding error in the quantity of learning instances.

1.7 The total

Tier Learning instances
Pre-neural (bacteria, mutation-discounted) 3 x 1040
Invertebrates (behavioral, optimistic) ~ 103
Vertebrates ~10%

Full total ~ 3 x 1040

The pre-neural phase dominates by nine orders of magnitude. The microbial era, with its vast populations
and relentless generational turnover, performed the overwhelming bulk of evolution’s optimization work. The
neural era, for all its sophistication, is a refinement.

But this raises an important question.

1.8 From chaos to cognition

We have computed the total across all three tiers. But not all of that computation is equally relevant to the
question we are asking.

Consider what we are actually trying to measure: the computational distance from a state of high cognitive
entropy, where no organism reasons, plans, or models the world, to the low-entropy state where general
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intelligence emerges. The first two tiers did not traverse that distance. They built the machinery that makes
the traversal possible. Bacteria assembled the molecular substrate of computation. Invertebrates developed
the basic algorithms of learning: habituation, conditioning, sensory integration, spatial memory. These are
the mechanics, the engine and the chassis. They are not the journey.

The journey, the actual transition from “learning exists” to “general intelligence exists,” happened during the
vertebrate era. It happened in organisms that inherited a working nervous system with established learning
algorithms, and then used those tools, across 500 million years and a trillion parallel lives, to develop abstract
reasoning, social cognition, planning, and flexible problem-solving.

This distinction matters because it is substrate-independent. We are not asking whether silicon can replicate
biology’s specific molecular machinery, or whether backpropagation is equivalent to synaptic plasticity. We
are asking a simpler question: how much computation separates cognitive disorder from cognitive order? The
vehicle, biological or artificial, provides the capacity to compute. The vertebrate learning instances are the
computation itself.

Silicon provides its own mechanics. At the substrate level: transistors, memory hierarchies, GPU architectures,
decades of computer science and engineering. At the algorithmic level: backpropagation, attention mechanisms,
reinforcement learning, and the mathematical theory that underpins them. Whether these mechanics are
equivalent to biology’s is genuinely debatable, and we will return to that question in later chapters. But even
granting the equivalence, the distance remains. The question is how far, not how.

QO ~ 1025

vertebrate

This is the maximally optimistic estimate: the computation that occurred after both foundations were in
place, during the era when general intelligence actually emerged. But what is the right number on the Al
side?

The conventional comparison uses floating-point operations: frontier language models consume roughly 10%°
FLOP during training, and 10%° against 10%° would suggest the gap is already closed. But this comparison is
inconsistent with our own methodology.

We rejected total synaptic operations as the metric for biology because most neural activity is not learning:
it is maintenance, homeostasis, routine processing. The same logic applies to FLOP. The vast majority
of floating-point operations in a training run are spent on the forward and backward passes: computing
gradients, not applying them. The moment the model actually learns, the moment its weights change, is
the gradient update step. Everything else is computation in service of that step, just as a lizard’s routine
neural firing is activity in service of staying alive, not learning. If we insist on counting only the moments
that matter on the biology side, intellectual honesty demands we do the same on the silicon side.

A frontier training run processes roughly 10 tokens in batches of several million, yielding approximately
10% to 107 gradient update steps. Each step is one adjustment: the model sees a batch of data, computes
how wrong it was, and updates its parameters. That is the atom of learning in stochastic gradient descent,
just as a learning instance is the atom of learning in biology.

The honest comparison is adjustments to adjustments:

Q

25
vertebrate 10

=10'®

Even at maximum generosity, the gap is eighteen orders of magnitude.

For now, we note the range. The full estimate, counting all three tiers, is ~ 10%°. The vertebrate-only
estimate, measuring only the distance from cognitive chaos to cognition, is ~ 102°. Against ~ 107 gradient
updates, the gap ranges from eighteen to thirty-three orders of magnitude.



1.9. VERIFICATION 11

1.9 Verification

We derived these numbers from populations, rates, and timelines. Can we check them against something
independent? Two approaches.

1.9.1 Energy consistency

If our learning instance count is correct, the energy cost per instance should be physically plausible. We can
estimate total neural energy expenditure independently and divide.

Attwell and Laughlin’s foundational work on the brain’s energy budget established that a single synaptic
transmission event costs roughly 8 x 10712 joules. Mink, Blumenschine, and Adams showed that the ratio of
central nervous system metabolism to body metabolism is remarkably constant across vertebrate classes,
at roughly 2 to 8 percent. Herculano-Houzel demonstrated that glucose consumption per neuron is nearly
constant across rodent and primate species, varying by only 40 percent.

During the neural era, average biosphere power was roughly 70 TW (Hoehler and colleagues). Animals
consume approximately 5% of biosphere energy. Neural tissue accounts for roughly 5% of animal energy
on a population-weighted basis (lower than the vertebrate average, since invertebrate nervous systems are
proportionally smaller). Total neural energy:

Ey ~ 70 x 1012 x 0.05 x 0.05 x 1.58 x 1016 ~ 3 x 10?5 J

Energy per learning instance: 3 x 102°/103! = 3 x 107® J, or about 3 microjoules. A small insect brain
consumes roughly 1075 joules per second. At that rate, 3 microjoules is about 0.3 seconds of full brain
activity: a brief sensory-motor cycle. Physically plausible.

1.9.2 Behavioral plausibility

If our per-organism learning rate (10~ instances per second) is correct, individual organisms should accumulate
a reasonable number of learning instances over their lifetimes. We can check this against species whose
learning has been studied in detail.

Honeybee. A forager bee lives roughly six weeks, with about three weeks of active foraging. At 1074
instances per second, it accumulates roughly 200 to 400 learning instances over its lifetime. The literature
on honeybee cognition, particularly the work of Menzel and colleagues, documents that foraging bees learn
and retain flower colors, shapes, scents, locations, reward quality, time-of-day patterns, panoramic landscape
views, compass directions, and navigational routes. Several hundred distinct learned items over a lifetime is
consistent with this.

C. elegans. The nematode C. elegans lives two to three weeks. At 10~* instances per second, it accumulates
roughly 100 to 200 learning instances. Despite having only 302 neurons (the complete connectome was
mapped by White and colleagues in 1986), C. elegans demonstrates habituation to mechanical and chemical
stimuli, sensitization, associative learning linking temperature, smell, and taste to food availability, and both
short-term and long-term memory, as documented extensively by Rankin and others. One to two hundred
learning events over a lifetime is plausible for this repertoire.

Mouse. A mouse lives roughly two years. Mice are among the most learning-intensive vertebrates: place
cells form within seconds of encountering a novel environment, and fear conditioning is reliably one-trial. In
the wild, a mouse explores its territory, forages, avoids predators, and navigates social hierarchies, plausibly
encountering several hundred novel learning situations per day. At a conservative 200 events per day, well
below what laboratory studies of hippocampal plasticity suggest the brain can handle, a mouse accumulates
roughly 150,000 learning instances over its lifetime. Mice in complex environments learn spatial maps, food
cache locations, social hierarchies, predator avoidance strategies, and hundreds of contextual associations.
Over a hundred thousand learning events across a two-year life in a rich environment is reasonable.
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These checks do not prove the estimate is correct. They demonstrate internal consistency: the per-organism
rate produces lifetime learning counts that match what behavioral science has documented.

1.10 The human question

The vertebrate calculation treats all 10'? organisms as contributing equally to the journey toward general
intelligence. But this obscures an important detail: humans are qualitatively different. Language, abstract
reasoning, cumulative culture, technology—these capabilities emerged very recently and in a very small
population. How much of the 10%° learning instances was specifically required for human-level cognition?

The genus Homo appeared roughly 2.5 million years ago. Anatomically modern humans (Homo sapiens)
emerged approximately 300,000 years ago. Behavioral modernity—language, art, complex tools, symbolic
thought—is evident in the archaeological record only within the last 100,000 years. For most of vertebrate
history, the most sophisticated organisms were nowhere near human intelligence.

If we isolate the human lineage specifically, the calculation narrows dramatically. Human population over the
last 100,000 years averaged perhaps 10° to 107 individuals (peaking only recently at 10'°). At 100 learning
instances per day over 100,000 years:

Qpuman ~ 107 humans x 102 instances/day x 365 days/year x 10° years

Qhuman ~ 4 X 1016

This is nine orders of magnitude smaller than the full vertebrate estimate. Does this mean the gap to
human-level intelligence is only 10*¢/107 ~ 10°—*“merely” a billion-fold?

No, for two reasons. First, humans inherited the neural machinery that the previous 500 million years of
vertebrate evolution built. The 10'® human learning instances operated on top of a substrate that cost 10%°
instances to develop. You cannot train a human brain from random initialization; you need the machinery
evolution built.

Second, and more fundamentally, we do not know how much of human intelligence emerges from individual
learning versus evolutionary optimization. Language capacity, for instance, appears to have significant innate
structure (Chomsky’s universal grammar, though debated in details, captures a real phenomenon: children
acquire language with surprisingly little data). This innate structure was itself shaped by evolution, operating
over millions of generations. The 10'® human learning instances sit atop an evolutionary foundation that we
cannot bypass.

The honest answer is that the human-specific portion of the journey is difficult to isolate. What we can
say with confidence is that the full vertebrate estimate of 10?° learning instances represents the cost to go
from “no general intelligence” to “human-level general intelligence” starting from established neural learning
mechanisms. If we had those mechanisms in silicon—the consolidation cycle, the co-located memory, the
architectural substrate—perhaps 10'® or even 10'® learning instances would suffice. But we do not have those
mechanisms, and building them is part of the problem, not a solved prerequisite.

1.11 Where current Al fails

If the learning instances gap is real, it should be visible in failure modes: tasks that reveal the boundaries of
what 107 gradient updates over text can learn. The failures are indeed visible, and they cluster in predictable
ways.

Novel physical reasoning. Ask GPT-4: “I have a cup of water. I turn the cup upside down. Where is
the water?” The model answers correctly—it has seen this pattern in text. But ask: “I have a cup of water
with a plate balanced on top. I turn the cup upside down, then remove my hand. Where is the water?” The
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model struggles. This is a trivial problem for a toddler who has spilled water hundreds of times, but text
rarely describes this specific configuration. The model has learned the statistical regularities of water-related
text, not the physics of water.

Causal inference beyond correlation. Show the model data: “Every day the rooster crows, then the
sun rises.” Ask: “Does the rooster cause the sun to rise?” The model answers no, because it has seen text
explicitly stating that correlation is not causation. But present a novel correlation without explicit annotation,
and the model confuses the two. It has learned to parrot the distinction when prompted, but not to reliably
apply it.

7

Compositional generalization. Train the model on sentences like “the red triangle is above the blue circle
and “the green square is to the left of the yellow star.” Then ask: “Draw a scene with the purple pentagon
above the orange hexagon.” The model has seen all the component concepts, but combining them in a novel
configuration often fails. Human children, by contrast, effortlessly generalize compositional structure after a
handful of examples, because their learning is grounded in embodied interaction with objects in space.

Out-of-distribution robustness. Adversarial examples expose this starkly. Change a single pixel in an
image, imperceptible to humans, and the classifier flips from “panda” to “gibbon” with high confidence. Add
a small sticker to a stop sign, and an autonomous vehicle misclassifies it. These are not edge cases; they
reveal that the model has learned statistical regularities in the training distribution, not robust concepts
grounded in the structure of the world.

Common sense in unfamiliar contexts. Ask: “If I put my phone in the fridge, will it get cold?” The
model answers yes. Ask: “If I put my phone in the fridge for three days, will it spoil?” The model may
say no, because phones do not spoil. But ask: “If I put my phone in the fridge, then take it out into a hot
humid room, what happens?” The model often misses that condensation will form and potentially damage
the phone. This is trivial common sense for anyone who has experienced humidity, but text rarely describes
this specific scenario. The 10° bits per second of lived experience is missing.

These failures have a common structure: they occur where the model must generalize beyond the statistical
regularities it has seen in text to the underlying causal, physical, or compositional structure of the world.
This is precisely what we would predict from the learning instances gap. Text captures correlations, frequent
patterns, and explicit human descriptions of rules. It does not capture the full sensory bandwidth of embodied
experience from which robust world models are built.

The model has learned the 108 of reality that made it into text. The failures reveal the 99.9999% that did
not.

1.12 The case against

Let us give the opposition its strongest possible arguments.

“Evolution is wasteful.” Natural selection is not gradient descent. It does not follow the steepest path to
a solution. It wanders, gets stuck in local optima, spends millions of years on body plans that lead nowhere.
Surely a more directed optimization process could find intelligence with far less computation.

This is plausible. Directed search is generally more efficient than random search. But how much more
efficient? Evolution is not purely random; it is a sophisticated optimization algorithm that combines random
mutation with strong selection pressure, sexual recombination, and developmental constraints that bias
the search toward viable phenotypes. It is closer to a well-tuned evolutionary strategy than to brute-force
enumeration. Claiming a billion-fold speedup over this already-sophisticated process is extraordinary and
requires evidence, not assumption.

“Intelligence might have a shortcut.” Perhaps there exists a compact algorithm, a set of principles that,
once discovered, allows intelligence to be instantiated with modest computation. Evolution could not find
this shortcut because evolution optimizes for survival, not for elegant algorithms.

This is the strongest version of the objection, and we cannot rule it out. It is possible. But “possible” is not
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“probable,” and it is certainly not a basis for confident predictions about when AGI will arrive. The shortcut
hypothesis is unfalsifiable in the absence of the shortcut itself. Until someone demonstrates such a shortcut,
the only empirical evidence we have is the evolutionary record, and it says the problem is very, very hard.

“Moore’s Law and algorithmic improvements will close the gap.” Compute costs have fallen
exponentially for decades and may continue to do so. Even if 10?® learning instances is the target, perhaps
we simply need to wait.

The difficulty depends on which estimate we use. The optimistic gap of 10'® represents roughly 60 doublings.
At two years per doubling, that is 120 years of Moore’s Law, and this assumes the trend does not slow
further (it already has). The full gap of 1033 would require over 200 years. Algorithmic improvements could
compress the timeline, but they would need to close whatever gap remains after hardware gains, and no
algorithmic improvement in the history of computer science has delivered a 10'®-fold speedup on a problem
of this generality.

“Evolution’s solution is not the only solution.” Birds fly but airplanes do not flap their wings. Perhaps
artificial intelligence need not recapitulate biological evolution.

This analogy is frequently invoked and frequently misapplied. Airplanes do obey the same physics as birds.
Lift requires an airfoil and forward motion through a fluid. The Wright brothers studied birds obsessively.
What changed was the mechanism (fixed wings instead of flapping), not the underlying principle (Bernoulli’s
equation, Newton’s third law). If artificial intelligence departs from biological intelligence, it must still solve
the same underlying problem: extracting reliable generalizations from experience in a world governed by
physics. The question is not whether the mechanism must be identical, but whether the computational cost
of solving the problem can be radically reduced. Our estimate, built entirely from optimistic assumptions,
suggests the cost is high.

“Current Al systems already show signs of general intelligence.” Large language models pass bar
exams, write code, reason about novel problems, and exhibit capabilities that were not explicitly trained.
Perhaps current training runs are already sufficient for a meaningful degree of general intelligence.

We address this argument fully in a later chapter, but the short response here is: there is a difference between
impressive performance on specific benchmarks and the kind of robust, flexible, embodied intelligence that
evolution produced. A system that can discuss the concept of heat but has never been burned, that can
describe a sunset but has never seen one, has a qualitatively different relationship to knowledge than an
organism that has lived through these experiences. Whether this difference matters for practical applications
is debatable. Whether it constitutes general intelligence in any rigorous sense is the question this book exists
to explore.

The invoice stands. By the most optimistic accounting we can construct, nature spent 10%° learning instances
to produce general intelligence. The largest artificial training runs have performed roughly 107 gradient
updates. The gap is eighteen orders of magnitude. We have tilted every assumption in favor of the optimist,
and the distance remains.

1.13 Chapter summary

« Evolution spent approximately 10%° learning instances across all three tiers (microbial, invertebrate,
vertebrate), or 102° if we count only the vertebrate era where general intelligence emerged

e A learning instance is a cycle of organism-environment interaction from which adaptive information can
be extracted, not merely neural activity

« Current frontier Al training runs perform roughly 107 gradient updates, yielding an eighteen-order-of-
magnitude gap

e This is a lower-bound estimate using every optimistic assumption; the true gap may be larger

o Human-specific intelligence may require “only” 106 learning instances, but this sits atop evolved neural
machinery that cost 102 instances to build

e Current Al failures cluster predictably in areas requiring generalization beyond text: physical reasoning,
causal inference, compositional generalization, out-of-distribution robustness
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e The gap is not merely quantitative but reveals the difference between learning statistical regularities in
text versus learning from embodied interaction with physics
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Chapter 2

The architecture chasm

“The brain is a computer made of meat.” — Marvin Minsky

The gap between biological and artificial intelligence is not merely quantitative. It is architectural, rooted in
the fundamental organization of memory and computation. This chapter examines why organic systems can
do what silicon cannot, and whether this difference can be overcome.

2.1 The plasticity gap

Beyond the quantity of learning instances and the richness of the training signal, there is a third dimension
of the gap that we have not yet addressed: the architecture of learning itself. Organic and artificial systems
do not merely differ in how much they learn or what they learn from. They differ in how they learn, and this
difference constitutes its own bottleneck.

2.1.1 The organic learning cycle

Biological learning is not a single event. It is a continuous cycle: wake, experience, sleep, consolidate, repeat.
Every day, every organism with a nervous system runs this loop.

McClelland, McNaughton, and O’Reilly formalized this in 1995 as the theory of complementary learning
systems. The brain maintains two distinct but interacting memory systems. The hippocampus encodes new
experiences rapidly, capturing episodes in something close to real time: a single exposure to a novel environment
is sufficient to create a stable hippocampal representation. The neocortex, by contrast, learns slowly, extracting
statistical structure from experience over days, weeks, and months. During sleep, hippocampal memories are
replayed and gradually integrated into neocortical representations, a process that interleaves new memories
with old ones to prevent the new from overwriting the established.

This is not an optional feature. It is the mechanism that allows organisms to accumulate knowledge over a
lifetime without losing what they already know. A crow that learns to use a new tool does not forget how to
fly. A rat that maps a new environment does not lose its memory of its home territory. The consolidation
cycle, running on a roughly 24-hour period, is what makes lifelong learning possible.

The scale of this process is staggering. Billions of organisms, each running the learn-consolidate cycle every
day, for 500 million years. The total number of consolidation cycles across the vertebrate era alone:

10'2 organisms x 365 days/year x 5 x 108 years ~ 2 x 10?3 consolidation cycles

Each cycle integrates new experience with existing knowledge without catastrophic loss.

17
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2.1.2 The one-shot learner

Large language models learn in a fundamentally different way. Training is a single monolithic pass through
the data. The model sees each example, computes its error, updates its weights, and moves on. When training
ends, the model freezes. Inference is recall, not learning. The model after training is a static function.

Fine-tuning exists, but it exposes the architectural limitation rather than resolving it. McCloskey and Cohen
demonstrated in 1989 that connectionist networks trained sequentially on new material catastrophically forget
previously learned material. This is not a subtle degradation; it is wholesale destruction. A network trained
on task A, then fine-tuned on task B, can lose its ability to perform task A entirely. The phenomenon is
qualitatively different from biological interference, where old and new memories compete but coexist. In
catastrophic forgetting, the old memories are overwritten.

Modern techniques (LoRA, elastic weight consolidation, replay buffers) mitigate the problem but do not solve
it. They slow the forgetting; they do not prevent it. No artificial system has demonstrated the ability to
learn continuously over thousands of tasks without performance degradation on earlier ones. Biology does
this effortlessly, because the consolidation mechanism was designed by evolution precisely for this purpose.

2.2 Memory bandwidth: why biology can do what silicon cannot

The architectural difference between biological and artificial learning is not merely algorithmic. It is physical,
rooted in the fundamental organization of memory and computation.

The human brain contains approximately 1.5 x 10 synapses. Bartol and colleagues demonstrated in 2015,
using serial-section electron microscopy of hippocampal tissue, that each synapse stores approximately 4.7
bits of information (26 distinguishable states of synaptic strength). The total storage capacity:

1.5 x 10 x 4.7 ~ 7 x 10'* bits ~ 1 petabit

Roughly one petabyte of storage, distributed across 10'# individually addressable elements. But the critical
feature is not the capacity. It is the architecture. Each synapse is simultaneously a storage element and a
computational element. There is no separation between memory and processing. When a synapse stores
a new weight, it does so at the site where that weight is used in computation. There is no bus, no cache
hierarchy, no fetch-store cycle. Backus identified this as the fundamental limitation of conventional computing
in 1978: the “von Neumann bottleneck,” where a single channel between processor and memory becomes the
limiting factor regardless of how fast either component operates.

In the brain, all ~ 10 synapses can update simultaneously. The effective “write bandwidth” is the entire
brain, operating in parallel. There is no serialization, no contention for a shared memory bus.

Compare this to frontier AI hardware. GPT-4 is estimated at roughly 1.8 x 10'2 parameters, stored at 16
bits each: approximately 3 x 10'3 bits, or about 3.6 terabytes. The brain has roughly 24 times more raw
storage. But the storage gap is not the decisive factor.

The decisive factor is bandwidth. The fastest GPU memory available (HBM3) achieves roughly 3.35 terabytes
per second. This sounds fast until we consider the physical reality of a single gradient step. For a 200-billion
parameter model, the weights alone occupy 400 gigabytes. To perform one update, we must move roughly
1.2 terabytes across the bus: reading the weights for the forward pass, then reading and writing them again
for the update. At the theoretical peak of HBM3, this data transit alone consumes 360 milliseconds. For
a processor, this is an eternity. In that same window, the human brain has integrated sensory input and
updated its internal state multiple times. It achieves this without moving a single bit of data. Its 104
synapses update in place, in parallel. The factory is the warehouse. The brain faces no such constraint.

The energy comparison is equally stark. Horowitz’s analysis of computing energy costs established the
hierarchy: a single synapse-like event in the brain costs roughly 10 femtojoules. Reading a bit from HBM3
costs roughly 2.5 picojoules, 250 times more. Reading from off-chip DRAM costs roughly 1.3 nanojoules,
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130,000 times more. The brain operates roughly 100,000 times closer to the Landauer thermodynamic limit
than conventional silicon memory.

At the system level: the brain runs on 20 watts. A single NVIDIA H100 GPU draws 700 watts. A frontier
training cluster of 25,000 GPUs consumes roughly 17 megawatts. The brain achieves comparable information
storage and vastly superior write bandwidth at approximately one millionth the system power.

2.3 Could silicon close the gap?

The von Neumann architecture is the fundamental constraint. Separate memory and compute means data
must travel, and travel costs energy and time. Three approaches attempt to overcome this.

Neuromorphic chips co-locate memory and computation on the same die. IBM’s NorthPole chip, described
by Modha and colleagues in 2023, achieves roughly 25 times the energy efficiency of comparable GPUs for
inference tasks. Intel’s Loihi implements spiking neural networks with on-chip synaptic memory. But these
chips face a hard tradeoff: co-locating memory limits total capacity to what fits on a single die. NorthPole is
an inference accelerator, not a training platform. As Modha acknowledged, “we cannot run GPT-4 on this.”
The largest neuromorphic system built to date, Intel’s Hala Point (1,152 Loihi 2 chips), contains roughly 10°
artificial neurons: five orders of magnitude short of the brain’s 10'* synapses.

Memristors are analog devices that store synaptic weights in their resistance state, co-locating storage and
computation at the device level. The best laboratory demonstrations achieve roughly 1.23 femtojoules per
synaptic operation, approaching the brain’s 10 femtojoules. But commercial memristor arrays remain 1,000 to
100,000 times less efficient than biology, and fabricating 10'# of them on a single substrate, the density needed
to match the brain’s synapse count in a comparable volume, exceeds any current or near-term lithographic
capability. The brain packs 10'# synapses into roughly 1.2 liters. No silicon process achieves this density.

The theoretical floor for this cost is the Landauer limit. Derived from the second law of thermodynamics, it
defines the minimum energy required to erase one bit of information:

E=FkTIn2

Where k is the Boltzmann constant (1.38 x 10723 J/K) and T is the absolute temperature. At a room
temperature of 27°C (300 K), this value is approximately 2.87 x 102! joules, or 0.003 femtojoules. The
brain, at 10 femtojoules per synaptic event, operates within a factor of 3,500 of this thermodynamic floor.
Conventional DRAM, at roughly 10° femtojoules per access, sits 350 million times above it. Even perfect
memristors operating at the Landauer limit would still need to be fabricated at biological density, 10'4 devices
in parallel, to match the brain’s effective bandwidth. We are not close to this.

2.4 Why continual learning fails

The catastrophic forgetting problem has not been ignored. Decades of research in continual learning, lifelong
learning, and meta-learning have attempted to solve it. The results are instructive: every approach mitigates
the problem but none solves it at the scale and generality that biology achieves effortlessly.

Elastic Weight Consolidation (EWC): Kirkpatrick and colleagues at DeepMind proposed in 2017 that
important weights for previous tasks should be protected during training on new tasks. The method estimates
which weights matter most (using the Fisher information matrix as a proxy) and adds a regularization term
that penalizes changing them. This slows forgetting but does not prevent it. On sequences of 10-20 tasks,
performance degrades measurably. On sequences of hundreds or thousands of tasks, the approach breaks
down entirely.

Progressive Neural Networks: Rusu and colleagues proposed growing the network for each new task,
adding new columns while freezing previous ones. This prevents forgetting by construction: old knowledge
is literally frozen. But the network grows without bound, and interference still occurs through lateral
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connections. More fundamentally, this is not continual learning; it is task-specific modularization. Biology
does not add a new brain region for every new skill.

Replay buffers: Store examples from previous tasks and interleave them during training on new tasks.
This works if the buffer is large enough to represent the full training history, but then you are not learning
continuously—you are re-training from scratch on the accumulated buffer. If the buffer is small, you get
a biased sample, and forgetting still occurs. Replay is effective in narrow domains (Atari games, robotic
control) but does not scale to the open-ended learning that biology performs.

Meta-learning approaches (MAML, Reptile): Train the model to be good at learning new tasks with
few examples. This improves sample efficiency on new tasks but does not prevent forgetting of old ones. The
model learns a good initialization, not a consolidation mechanism.

Synaptic intelligence, PackNet, CPG: Various approaches that identify important weights and protect
them. All reduce forgetting relative to naive fine-tuning. None approach biological performance. On standard
continual learning benchmarks (Split MNIST, Permuted MNIST, Split CIFAR), these methods allow the
model to learn perhaps 10-50 tasks before performance collapses. Vertebrate organisms learn thousands of
skills over a lifetime without forgetting how to walk.

Why do all these approaches fall short? Because they are patches applied to an architecture designed for
one-shot learning. The transformer, like all feedforward neural networks, separates learning (training time,
weights update) from inference (test time, weights frozen). There is no native consolidation mechanism, no
dual-system architecture like hippocampus-neocortex, no sleep cycle that integrates new experience without
overwriting old knowledge.

Building such an architecture from scratch is an unsolved problem. Whether it can be solved in silicon, and
whether it would be computationally feasible even if solved, remains unknown. What is clear is that current
approaches do not work, and the gap between silicon and biology on this dimension is as large as the learning
instances gap.

2.5 The consolidation compute

Return to the calculation from Chapter 1. Vertebrate organisms ran 2 x 1023 consolidation cycles over 500
million years. Each cycle integrated new experience with existing knowledge across perhaps 10! to 10
synapses (depending on organism size). This is computational work that happened in addition to the learning
instances themselves.

If we estimate conservatively that each consolidation cycle involves processing information across 10'° synapses
(appropriate for small vertebrates that dominate the population), and each synapse performs roughly 103
operations during consolidation (replay, integration, synaptic scaling), then:

Consolidation compute ~ 2 x 1023 cycles x 1019 synapses x 10® ops/synapse

~ 2 x 1036 operations

This is in addition to the learning instances themselves. It is the architectural overhead of continuous learning:
the compute spent integrating new knowledge without forgetting old knowledge.

Current AI has no equivalent. A training run performs 107 gradient updates, then stops. There is no
consolidation, no integration, no sleep. The model after training is static. Fine-tuning is possible, but as we
have documented, it causes catastrophic forgetting unless carefully managed with replay or regularization—and
even then, it does not scale.

If we wanted to replicate evolution’s consolidation compute in silicon, using current architectures and current
hardware, how long would it take? GPT-4 training reportedly used roughly 10?° FLOP. To reach 1036
operations would require 10! training runs of equivalent scale. At current energy consumption (roughly 17
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megawatts for a frontier training cluster running for months), this would consume more energy than human
civilization produces in a year.

The consolidation compute is not a small overhead. It is, potentially, the dominant cost of biological learning.
And current AT does not do it at all.

2.6 The compound problem

The gap is not only quantitative, how many learning instances, or qualitative, what the training signal contains.
It is architectural. Organic systems are continuous learners with co-located memory and computation, massive
parallel write bandwidth, and a consolidation mechanism that prevents catastrophic forgetting. Silicon
systems are one-shot learners with separated memory and compute, serial bandwidth bottlenecks, and no
consolidation mechanism.

Even if we could somehow generate 102° learning instances of equivalent richness to biological experience, the
current architecture could not process them in the way biology does: continuously, with consolidation, without
forgetting. A single monolithic training run is not equivalent to 500 million years of daily learn-and-consolidate
cycles, even if the total instance count matches. The path through the data matters, not merely the quantity.
And the path that biology took, continuous learning with sleep-mediated consolidation, is one that current
silicon architectures cannot follow.

2.7 Chapter summary

e Biology achieves continuous learning through complementary systems: hippocampus for fast encoding,
neocortex for slow integration, sleep for consolidation

e Current Al suffers catastrophic forgetting: fine-tuning on new tasks destroys performance on old tasks

« Existing continual learning approaches (EWC, progressive networks, replay buffers, meta-learning)
mitigate but do not solve the problem at biological scale

e The von Neumann bottleneck: separated memory and compute creates bandwidth and energy costs
that biology avoids through co-located synaptic memory

« Biology’s 10'* synapses update in parallel at 10 femtojoules per operation, operating near the Landauer
thermodynamic limit

« Silicon memory operates 10° to 10® times further from the thermodynamic limit and requires serial
data movement

e Neuromorphic and memristor approaches show promise but remain orders of magnitude short of
biological density and efficiency

o Vertebrates ran 2 x 102 consolidation cycles, representing perhaps 1036 operations of integration
compute beyond the learning instances themselves

e Current training runs perform no consolidation; the architectural gap is as fundamental as the learning
instances gap
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Chapter 3

The sensory bandwidth gap

“We can know more than we can tell” — Michael Polanyi

The sheer number of learning instances is only half the story. The other half is what those instances were
computed over: the training data, to borrow the machine learning framing. This chapter examines the
fundamental difference between text and embodied experience.

3.1 Nature’s training data

Every organism that contributed to evolution’s computation was embedded in a physical environment. It did
not read about sunlight; it photosynthesized or basked in it. It did not process text descriptions of predators;
it heard them, smelled them, ran from them, and sometimes was eaten by them. The “training signal” was
not a loss function on token prediction. It was survival and reproduction, evaluated against the full sensory
bandwidth of embodied existence.

We can now quantify how much bandwidth that actually is. Zheng and Meister established in their 2024
analysis in Neuron that the human sensory periphery transmits approximately 10° bits per second: roughly
one gigabit, dominated by the optic nerve but with substantial contributions from auditory, somatosensory,
proprioceptive, and vestibular channels. Of this torrent, conscious experience processes roughly 10 bits per
second. The compression ratio from raw sensation to conscious awareness is on the order of 108 to one.

Over a human lifetime of roughly 80 years, with about 16 waking hours per day, the total raw sensory input
amounts to:

80 x 365 x 16 x 3600 x 10° ~ 1.5 x 10*® bits

Now consider text. The entire written output of human civilization, from Sumerian cuneiform to the modern
internet, has been estimated at roughly 3 x 108 bits (including all digitized books, all web pages, all archived
documents). This is a generous upper bound; the high-quality subset that language models actually train on
is far smaller. The comparison is devastating: all the text humanity has ever produced contains roughly the
same quantity of raw information as a single human lifetime of sensory experience. The entire written record
of civilization, 5,000 years of accumulated thought, fits inside one pair of eyes.

3.2 Information quantity vs. information content
But information quantity is not the same as information content. Text is not merely a smaller quantity of the
same substance. It is a fundamentally different kind of signal: a lossy compression of experience into symbols,

with the vast majority of the original information discarded. When we read “the coffee was hot,” we bring to
that sentence a lifetime of thermal experience that the sentence itself does not contain. A language model
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processes the tokens. A human recalls the burn. The word “hot” in a corpus is a pointer to an experience
that the corpus cannot store.

This is not merely a philosophical observation. Polanyi formalized the problem in 1966: “we can know
more than we can tell.” The domain of tacit knowledge, skill, intuition, perceptual judgment, embodied
understanding, is not a small residual left over after we articulate what we know. It is the majority of what
we know. The knowledge management literature consistently estimates that 70 to 80 percent of organizational
knowledge is tacit: non-verbalizable, non-transferable through text. Autor brought this into economics in
2014 as “Polanyi’s paradox,” demonstrating that the tasks most resistant to automation are precisely those
that rely on tacit knowledge, because we cannot write down rules for what we cannot articulate.

Language captures the 10 bits per second that survive the compression into conscious, articulable thought.
It does not capture the 10° bits per second of raw sensation from which that thought was distilled. A
corpus trained on text is trained on the 1078 fraction of experience that made it through the bottleneck of
articulation.

3.3 The grounding problem

This distinction matters for a precise reason. The learning instances we counted were not performed over
tokens. They were performed over the full sensory bandwidth of embodied organisms interacting with physics,
or in the microbial case, over the direct chemical and thermal realities of survival. If we want to claim that a
system trained on text can match the output of this process, we need a theory of how lossy compression of
experience into language preserves the adaptive information that the original experience carried. No such
theory exists.

And there is a further consequence: even on a step-for-step basis, the comparison flatters Al. Each biological
learning instance involves a whole organism perceiving and acting in a physical environment across its
full sensory bandwidth. Each gradient step in a language model processes a batch of text tokens. The
informational richness per step is not comparable. If anything, counting one gradient update as equivalent to
one learning instance is generous to silicon.

3.4 The multimodal response

The obvious objection: multimodal models that process images, video, and audio are closing this gap. They
are no longer text-only; they observe the world through vision and sound.

But observation is not interaction. A model that watches a video of fire has not been burned. A model
that processes images of food has never been hungry. The difference between passive observation and
embodied experience is not merely one of bandwidth; it is one of stakes. Organisms learn because failure has
consequences: starvation, predation, reproductive failure, death. The training signal is not mean squared
error on pixel prediction. It is survival.

Text bandwidth vs. sensory bandwidth: Human language communicates at roughly 40 bits per second
(controlled articulation rate). Human sensory input runs at roughly 10° bits per second. Text is a compression
ratio of approximately 2.5 x 107:1. Even with multimodal data added, video at typical compression delivers
perhaps 106 bits per second: still three orders of magnitude below raw sensory experience, and with no
physical consequences tied to the learning signal.

3.5 What is lost in compression?

The 99.9999% of experience that does not make it into text (or even into video) is not random noise. It
is the substrate from which understanding emerges. The weight of an object, the texture of a surface, the
proprioceptive feedback from muscle tension, the thermal sensation of temperature, the vestibular sense of
balance, the olfactory landscape of a physical space: these are not decorative details. They are the grounding
for concepts that language can only name, not convey.
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When we say a language model “understands” physics because it can solve physics problems stated in text,
we are using “understand” in a sense that would be unrecognizable to a physicist who has spent years in
a laboratory, manipulating physical systems, observing outcomes, developing intuition through embodied
interaction. The model has learned the symbol manipulation rules of physics. Whether it has learned physics
is the question this book exists to explore.

3.6 Tacit knowledge that text cannot capture

The most revealing examples of the sensory bandwidth gap are skills that even young children possess but
that no amount of text can convey.

Riding a bicycle. Ask any cyclist to explain how they balance. The answer will be vague: “You just lean
into it,” “You feel when you’re tipping,” “Your body knows what to do.” This is not evasiveness. It is the
honest acknowledgment that the knowledge is tacit. The cerebellum and motor cortex maintain a control
loop involving vestibular input (balance), proprioceptive feedback (body position), visual flow (velocity),
and predictive models of dynamics. This loop operates at millisecond timescales below conscious awareness.
Reading a thousand pages about bicycle physics does not create this control loop. The knowledge is encoded
in synaptic weights shaped by thousands of trials, falls, and recoveries.

Catching a ball. The solution to this problem requires solving differential equations in real time: given the
ball’s trajectory (which must be estimated from incomplete visual data), predict the interception point and
move there. Humans do this effortlessly by age five. The computation happens in visual cortex, parietal
cortex, and motor cortex without conscious access. When asked to explain how they catch, subjects say: “I
just watch it and move to where it’s going.” This is not an explanation; it is a description of phenomenology.
The actual computation, involving optical flow analysis, predictive extrapolation, and motor planning, is
entirely tacit.

Judging if ice will hold your weight. This requires integrating visual cues (color, transparency, surface
texture), auditory cues (cracking sounds), proprioceptive cues (how the ice flexes underfoot), and contextual
knowledge (temperature, wind, time of year). An experienced person makes this judgment in seconds with
high confidence. Ask them to articulate their decision process, and they struggle: “It looks solid,” “The color
seems right,” “I’ve walked on ice like this before.” These descriptions capture fragments of the input but not
the integration process. The judgment is a weighted combination of dozens of features, most of which the
person cannot consciously access or verbalize.

Tying shoelaces. This motor skill is learned through repetition until it becomes automatic. Ask someone
to describe how they tie their shoes, and they will struggle unless they slow down and consciously monitor
their hands. The procedural knowledge is stored in motor cortex and cerebellum, encoded as sequences of
muscle activations, not as verbal instructions. You cannot learn to tie shoes by reading instructions alone;
you must practice until the motor memory forms.

Estimating object weight from vision. Before lifting an object, humans visually estimate its weight based
on size, material, and context. Pick up a box that looks heavy but is empty, and you will apply too much
force—your motor system prepared for the visually estimated weight. This mapping from visual features to
expected weight is learned through thousands of lifting experiences and is entirely non-verbal. No amount of
text describing “metal is denser than wood” creates this perceptual-motor calibration.

Navigating a crowd. Walking through a dense crowd without colliding requires real-time prediction of
other people’s trajectories, planning a path, adjusting based on peripheral vision, and coordinating muscle
activation to execute the plan. This is continuous sensory-motor integration at millisecond timescales. People
do it effortlessly while conversing, thinking about other things, their attention elsewhere. The computation is
entirely tacit, operating below the threshold of conscious articulation.

These are not exotic skills. They are everyday embodied intelligence that nearly all humans possess by
adulthood. Text rarely describes them in detail because they are difficult to articulate. When text does
describe them (instructional manuals, coaching guides), the descriptions are crude approximations. A manual
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on bicycle riding cannot replace the lived experience of falling and recovering until the sensory-motor loop is
calibrated.

A language model trained on text sees the words “riding a bicycle” millions of times. It learns that bicycles
have two wheels, that balance is required, that people learn as children. It can answer questions about
bicycles and even generate plausible instructions. But it does not have the sensory-motor knowledge that a
five-year-old possesses after a weekend of practice. The 10° bits per second of embodied experience—the falls,
the vestibular feedback, the proprioceptive calibration—are not in the training data.

This is the tacit knowledge gap. It is not a small residual left over after articulation. It is the majority of
human intelligence: perceptual, procedural, embodied, grounded in physics, and inaccessible to any system
trained only on text.

3.7 Chapter summary

o Human sensory bandwidth is approximately 10° bits per second; conscious articulation captures roughly
10 bits per second, a compression ratio of 108 to one

o All human-generated text (books, web, papers) contains roughly 3 x 10'® bits, equivalent to one human
lifetime of sensory experience

o Text is lossy compression of experience into symbols; the word “hot” points to thermal experience the
text does not contain

e Polanyi’s paradox: 70-80% of knowledge is tacit, non-verbalizable, non-transferable through text

o Biological learning instances operated over full sensory bandwidth of embodied organisms interacting
with physics; gradient updates operate over token sequences

e Multimodal models observe but do not interact; observation is not equivalent to embodied experience
with stakes (survival, reproduction)

e Tacit knowledge examples: riding a bicycle, catching a ball, judging if ice is safe, tying shoelaces,
estimating object weight from vision, navigating crowds

e These are skills even young children possess but that no text can convey; they require lived sensory-motor
calibration

e The training signal for evolution was survival evaluated against physics; the training signal for LLMs is
cross-entropy loss on token prediction

o This is not a quantitative gap that more scale can close; it is a qualitative difference in the substrate of
learning
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Chapter 4

Diminishing returns

“It is difficult to get a man to understand something when his salary depends upon his not
understanding it.” — Upton Sinclair

Chapter 1 established the target: 102> learning instances at the optimistic vertebrate-only estimate, against
roughly 107 gradient updates in frontier Al training. The gap is eighteen orders of magnitude. The question
this chapter asks is whether scaling, the strategy of simply making models bigger and training them longer,
can close it.

4.1 The power law promise

The case for scaling rests on a genuine empirical discovery. Kaplan and colleagues at OpenAl demonstrated
in 2020 that language model performance, measured as cross-entropy loss on held-out text, follows a power
law in three variables: the amount of compute C, the number of model parameters IV, and the size of the
training dataset D. Specifically:

L(C) =Qa¢ C_ac, oo ~ 0.050
LIN) = ay- NN, ay~0.076

L(D)=ap-D >, ap~0.095

These are not theoretical predictions. They are fits to experimental data spanning five orders of magnitude of
compute, from small models trained on modest datasets to the largest systems available at the time. The fits
are remarkably clean: the power law holds with minimal deviation across the entire range.

Hoffmann and colleagues refined this picture in 2022 with the Chinchilla study, which demonstrated that
Kaplan’s original scaling prescription was suboptimal. Kaplan had suggested scaling parameters faster than
data; Hoffmann showed that compute-optimal training requires scaling both in roughly equal proportion, at
approximately 20 tokens per parameter. A model with 70 billion parameters, trained on 1.4 trillion tokens
(the Chinchilla recipe), outperformed a 280-billion-parameter model trained on 300 billion tokens (the Gopher
recipe), despite using the same compute budget. The lesson was clear: the field had been training models
that were too large on too little data.

Power laws in complex systems reflect deep structural properties of the underlying optimization landscape.
The scaling community’s central claim, that performance improves predictably with scale, has been validated
repeatedly across model families, training methodologies, and evaluation benchmarks.

The question is not whether the scaling laws hold. The question is what they actually promise.
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4.2 Diminishing returns as mathematical certainty

A power law with exponent a < 1 is, by definition, a function of diminishing returns. It is a mathematical
consequence of the functional form itself. Let us derive the implications explicitly.

The scaling law for compute is:

L(C)=a-C™™, a=0.05

Suppose we are currently at compute level Cy with loss Ly = a - Cy®. To reduce the loss by a factor of 2
(halve it), we need compute C; such that:

o Ly a-Cg®
e
Solving;:
C—(X
Ofoc — 0
! 2
Cl = CO . 21/0&
For o« = 0.05:

21/0.05 — 9220 o, 106

To halve the loss, we need one million times more compute. To halve it again from that new level, we need
another factor of 10 on top: 10'? times the original budget. Each successive halving costs a million-fold
increase.

We can express this more generally. The compute required to reduce loss by a factor of k£ from any starting
point is:

C

new __ k.l/a

Cold

For even modest improvements, the cost becomes extreme:

Loss reduction factor Compute multiplier (o = 0.05)

2x better ~ 109

3x better ~ 109
5x better ~ 10
10x better ~ 10%0

A tenfold improvement in loss requires 102° times more compute than the current level. For context, the
entire global compute capacity deployed for Al training in 2024 was estimated at roughly 102 FLOP. A
tenfold loss improvement from that baseline would require 106 FLOP, exceeding the estimated computational
capacity of a Kardashev Type I civilization.

Now connect this to the gap from Chapter 1. We argued that the comparison between biological learning
and artificial training should be measured in gradient updates versus learning instances, yielding a gap of
10'8. But even if we accept the FLOP-to-FLOP comparison favored by scaling optimists, the scaling law
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itself tells us that progress decelerates at a rate that makes closing the gap extraordinarily expensive. The
power law does not promise convergence. It promises asymptotically slowing approach toward a floor.

The Chinchilla revision, which roughly doubled the effective exponent by fixing the data-parameter ratio, was
a genuine improvement. But doubling « from 0.05 to 0.1 changes the compute multiplier for a tenfold loss
reduction from 10%° to 10'°. Better, but still astronomical. And Chinchilla was a one-time correction of a
systematic error in training methodology. There is no reason to expect repeated corrections of comparable
magnitude.

4.3 The bitter lesson and its limits

In 2019, Rich Sutton published a short essay titled “The Bitter Lesson” that became one of the most cited
pieces of informal writing in AI research. His argument was simple and historically well-supported: across
the history of artificial intelligence, general methods that leverage computation have consistently won over
methods that leverage human knowledge. Hand-crafted features lose to learned features. Expert systems lose
to neural networks. Carefully engineered game-playing programs lose to brute-force search combined with
learning. The lesson is “bitter” because it means that human cleverness about the structure of problems is
less valuable than raw compute applied to general-purpose learning algorithms.

Sutton was right about the history. The trend he identified is real and has continued to hold. But the
bitter lesson carries an implicit assumption that we should make explicit: it assumes compute is the binding
constraint. Given sufficient data of sufficient quality, more compute yields better performance. The lesson’s
historical examples confirm this, because in every case Sutton cited, more data of the relevant kind was
available.

The question is whether the assumption holds for the frontier we are now approaching. The scaling laws
were measured over text: token prediction on natural language corpora. They describe how loss on text
decreases as a function of compute, parameters, and data, all applied to text. There is no empirical evidence
that these same scaling laws extend to the kind of learning that evolution performed: embodied, continuous,
multi-sensory, physically grounded experience evaluated against survival and reproduction.

This is not a pedantic distinction. Chapter 1 established that the evolutionary training signal was qualitatively
different from text in at least three ways: its information density (roughly 10° bits per second of sensory
input versus the bandwidth of written language), its grounding in physical causation (organisms interacted
with a world that obeys consistent physical laws, not with statistical regularities in token sequences), and its
evaluation criterion (survival and reproduction, not cross-entropy loss on held-out text). The scaling laws tell
us how fast text prediction improves with scale. They tell us nothing about whether text prediction, at any
scale, converges to the capabilities that embodied evolutionary learning produced.

Chapter 2 also established a fourth difference: the architecture of learning itself. Nature’s learning was
continuous, with daily consolidation cycles that interleaved new experience with existing knowledge. It ran on
co-located memory and computation with massive parallel write bandwidth. The scaling laws were measured
on systems that learn in a single pass, with separated memory and compute, and no consolidation mechanism.
Even if more compute and more data were available without limit, the one-shot training paradigm cannot
replicate the learn-consolidate cycle that enabled biological knowledge accumulation.

The bitter lesson says: do not bet against scale. Sound advice, as far as it goes. But it does not say: scale
solves all problems. The lesson is about the relative merit of general methods versus hand-crafted ones within
a domain where more data is available. It is silent on what happens when the data runs out, when the
training signal lacks the information content of the target domain, or when the learning architecture cannot
support the required mode of knowledge accumulation.

4.4 Empirical evidence of deceleration

The power law predicts deceleration. What does the empirical trajectory show?



32 CHAPTER 4. DIMINISHING RETURNS

GPT-2 to GPT-3 (2019 to 2020): Model size increased from 1.5B parameters to 175B parameters, roughly
100x. Training compute increased proportionally. The improvement was dramatic: GPT-3 demonstrated
few-shot learning, could follow complex instructions, and showed surprisingly broad knowledge. This was a
genuine capability jump, not merely incremental improvement.

GPT-3 to GPT-4 (2020 to 2023): Training compute increased by roughly another 10-100x (estimates
vary; OpenAl has not released precise figures). Model architecture became more sophisticated, incorporating
multimodality and likely mixture-of-experts. The improvement was real: GPT-4 passes professional exams
(bar exam, AP exams), writes more coherent long-form text, handles more complex reasoning chains, integrates
vision and text. But the improvement was smaller in qualitative terms than GPT-2 to GPT-3. GPT-4 is not
a different kind of system; it is a better version of the same kind of system.

Benchmarks confirm this. On MMLU (Massive Multitask Language Understanding), a broad knowledge
benchmark: - GPT-3: ~43% - GPT-3.5: ~70% - GPT-4: ~86%

The jump from GPT-3 to GPT-3.5 was 27 percentage points. The jump from GPT-3.5 to GPT-4 was 16
percentage points. The rate of improvement is slowing even as compute expenditure increases exponentially.

On HumanEval, a code generation benchmark: - GPT-3: ~0% - GPT-3.5 (code-davinci-002): ~47% - GPT-4:
~67%

Again, the largest jump was early. GPT-4 is better, but not 100x better, despite 100x more compute.

Claude 2 to Claude 3 to Claude 3.5 (2023 to 2024): Anthropic’s models show a similar pattern.
Claude 3 Opus outperformed Claude 2 significantly on reasoning benchmarks. Claude 3.5 Sonnet (mid-2024)
showed further improvement but on a smaller scale. The deceleration is visible.

Gemini models (2023-2024): Google’s Gemini Ultra achieved performance comparable to GPT-4, using
massive compute. Gemini 1.5 introduced a 1-million-token context window, a genuine architectural innovation,
but capability improvements on standard benchmarks were incremental.

The pattern is consistent across labs and model families: each generation requires more compute, and each
generation delivers smaller improvements. This is not surprising. It is what the power law predicts. But it is
direct evidence that we are moving up the curve into the regime of diminishing returns.

4.5 Test-time compute: does it change the picture?

OpenAT’s ol model, released in late 2024, introduced a new approach: test-time compute. Rather than simply
generating the most likely next token, the model performs internal “reasoning” steps, searching over possible
solution paths before committing to an answer. On some benchmarks, particularly mathematical and coding
problems, ol dramatically outperforms GPT-4.

Does this change the scaling picture?

The answer depends on what we mean by “scaling.” Test-time compute does not extend the training data,
does not increase the number of learning instances, and does not solve the architectural or sensory bandwidth
gaps. What it does is allow the model to spend more inference compute searching over possibilities within
the distribution it has already learned.

This is valuable. For problems that admit search (math, coding, formal reasoning), allocating more compute
at inference time can find better solutions. This is conceptually similar to chess engines, which improve with
more search depth even if the evaluation function remains constant.

But test-time compute has limits: 1. It only helps for problems where the solution can be verified (math,
code, logic). For open-ended generation, summarization, or creative tasks, there is no verifier to guide the
search. 2. It operates within the learned distribution. If the model has not learned the relevant concepts
during training, search cannot discover them. ol does not suddenly develop physical intuition or embodied
common sense; it searches more carefully over the text-based knowledge it already has. 3. It is expensive.
Inference cost scales with search depth. If ol uses 100x more compute per query than GPT-4, then deploying
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it at scale costs 100x more. This is acceptable for high-value tasks (scientific research, complex coding) but
not for general-purpose use.

Test-time compute is a genuine innovation and will be valuable in specific domains. But it does not solve the
fundamental gaps. It is better search over a limited map, not a larger map. The deceleration of capability
improvements with training compute remains, and test-time compute does not bypass the data wall, the
sensory bandwidth gap, or the architectural constraints.

4.6 The case against

We owe the strongest counterarguments a fair hearing.

“Scaling laws have held for five orders of magnitude. Betting against them is foolish.” This is
true, and it is the strongest version of the scaling argument. Five orders of magnitude is a large extrapolation
base, and the fits have been clean. But a power law with o < 1 is self-limiting by definition. The fact that it
holds does not mean it is sufficient. A function can hold perfectly and still guarantee that the destination is
unreachable within any feasible budget. We are not betting against the scaling laws. We are reading them
carefully, and what they say is that each unit of progress costs exponentially more than the last.

“Algorithmic improvements change the exponent.” Possible, and some improvements have been
genuine. The Chinchilla correction roughly doubled the effective exponent for a fixed compute budget. Mixture-
of-experts architectures, better tokenization, and curriculum learning have all contributed incremental gains.
But no demonstrated algorithmic improvement has delivered more than a roughly 2x efficiency gain in
compute-equivalent terms. The gap is 10'®. To close it through algorithmic improvement alone would
require discovering, in sequence, roughly 60 independent doublings of efficiency, each one a Chinchilla-scale
breakthrough. The history of computer science offers no precedent for sustained improvement at this rate on
a single problem class.

4.7 Chapter summary

e Scaling laws demonstrate that language model loss follows a power law L(C) = a - C~% with « & 0.05,
a function of diminishing returns by definition

« To halve the loss requires 10° times more compute; to reduce by 10x requires 10?° times more compute
(exceeding projected global AI compute capacity)

o The Chinchilla correction (2022) roughly doubled the effective exponent by fixing the data-parameter
ratio, but this was a one-time correction of a systematic error

e Empirical evidence confirms deceleration: GPT-3 to GPT-4 required 10-100x more compute for smaller
qualitative improvements than GPT-2 to GPT-3

e Benchmark trajectories show slowing gains: each generation delivers fewer percentage points of improve-
ment despite exponentially more compute

o The bitter lesson (Sutton, 2019) says general methods that leverage compute beat hand-crafted
approaches, but this assumes unlimited data and does not address architectural constraints

e Scaling laws were measured over text prediction; they tell us nothing about whether text prediction
converges to embodied, physically grounded intelligence

o Test-time compute (OpenAl’s ol) improves performance on verifiable problems through search but does
not extend training data or solve fundamental gaps

e Test-time compute operates within the learned distribution; it cannot discover concepts not present in
training data

e The 10'® gap cannot be closed by algorithmic improvements alone; this would require 60 sequential
Chinchilla-scale breakthroughs with no historical precedent
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Chapter 5

The data wall

“We have achieved peak data.” — Ilya Sutskever

The scaling laws assume unlimited training data. The Chinchilla prescription demands roughly 20 tokens per
parameter. For a model with 10 trillion parameters, the recipe calls for 200 trillion tokens. Where do these
tokens come from?

5.1 The finite supply

Villalobos and colleagues at Epoch Al published the most careful analysis of this question in 2024, presented
at ICML. Their estimate: the total stock of publicly available, high-quality text on the internet amounts to
roughly 300 trillion tokens. This is not a conservative guess; it includes web pages, digitized books, scientific
papers, code repositories, social media, forums, and news archives. The “high-quality” qualifier matters
enormously: the FineWeb dataset, one of the most careful web-scraping efforts, discards roughly 85% of raw
web text during quality filtering. The actual supply of text that meets the quality threshold for training
frontier models is a fraction of the raw total.

To appreciate the scale of the constraint, consider the components:

All books ever printed: approximately 170 million distinct titles. At a rough average of 70,000 words per
book, this yields roughly 12 trillion words, or about 16 trillion tokens. All scientific papers ever published:
roughly 100 million papers at an average of 5,000 words each, yielding 500 billion words or approximately
650 billion tokens. The entire scientific output of humanity across all disciplines, from the first journal in
1665 to today, would not fill a single training run for a frontier model.

Current frontier models train on roughly 13 to 18 trillion tokens. The data supply is growing, but not
fast: new high-quality text is generated at perhaps 2 to 3 trillion tokens per year, while model appetite
grows at roughly 2.5x per year. The curves cross. Villalobos and colleagues estimate that the data wall, the
point where demand for training data exceeds the supply of high-quality human-generated text, arrives by
approximately 2028 at the median estimate.

The implications for the scaling laws are direct. The power law L(D) = ap - D~*P holds only when more
data is available to train on. When the supply is exhausted, the curve hits a ceiling. No amount of additional
compute or parameters can compensate, because the Chinchilla result demonstrated that undertrained models
(too many parameters for the available data) perform worse, not better, than properly scaled ones. At the
data wall, making models bigger actively degrades performance.
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5.2 The multimodal extension

“Multimodal data extends the wall.”” Adding images, video, and audio to the training data increases the
total supply beyond text alone. Epoch Al estimates this provides roughly a 3x multiplier in effective tokens.
Video is particularly data-rich: a single hour of video at modest resolution contains more raw information
than a large book. But three considerations limit the impact.

First, 3x against a data wall measured in hundreds of trillions of tokens delays the wall by one to two years,
not one to two decades.

Second, multimodal data is still passively observed: the model watches video; it does not interact with the
physical world that the video depicts. The gap between observed and embodied experience, quantified in
Chapter 3, is not closed by adding more observation.

Third, the scaling laws for multimodal models have not been established with the same rigor as for text. It is
an assumption, not an empirical finding, that vision-language scaling follows the same power law.

5.3 When demand meets supply

5.4 Code: the special case

Code repositories represent a massive corpus of structured, high-quality text. GitHub alone hosts over 300
million repositories, containing trillions of tokens of code across hundreds of programming languages. Unlike
natural language, code has formal semantics: it must compile, it must run, and its behavior is (in principle)
verifiable. This makes code an attractive training target.

Models trained on code (GitHub Copilot, Code Llama, GPT-4 with code capabilities) show impressive
performance on standard programming tasks. They autocomplete functions, translate between languages, fix
common bugs, and generate boilerplate with high accuracy. Code generation has become one of the most
economically valuable applications of language models.

But code faces the same data wall as text, with additional constraints:

Finite supply. While GitHub grows daily, the growth rate is linear or sublinear, not exponential. New code
is generated at perhaps 100 billion to 1 trillion tokens per year (estimating from public GitHub commits).
Model appetite grows at 2.5x per year. The curves cross. By 2026-2027, model training will exhaust the
supply of high-quality public code.

Quality degradation. Not all code is equally valuable for training. Code repositories contain bugs,
deprecated patterns, security vulnerabilities, copy-pasted boilerplate, and abandoned projects with poor
practices. The signal-to-noise ratio is lower than for curated text like books or scientific papers. Aggressive
quality filtering discards perhaps 50-70% of raw code, reducing the effective supply.

Copyright and licensing. Much valuable code is proprietary or restrictively licensed. Training on
copyrighted code without permission has triggered lawsuits (GitHub Copilot, Stable Diffusion, and others).
Even if legal barriers are overcome, proprietary code represents information that models cannot access. The
public code commons is smaller than the total code produced.

Al-generated code pollution. As code generation tools become widely adopted, repositories increasingly
contain Al-generated code. This creates the same ouroboros problem as text: models trained on Al-generated
code ingest the biases and limitations of previous models. Stack Overflow already reports a significant fraction
of answers are Al-generated. Within a few years, distinguishing human-written code from Al-generated code
in public repositories may become difficult.

Diminishing returns from code. While code teaches models formal reasoning, syntax, and algorithm
implementation, it does not address the broader gaps documented in earlier chapters. Code does not provide
embodied grounding, causal understanding, or the sensory bandwidth of physical experience. A model trained
on all the code in the world will be an excellent code generator but no closer to general intelligence.
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Code extends the data supply by perhaps 1-2x in effective tokens compared to text alone. This delays the
data wall by a year or two. It does not eliminate it.

5.5 Data quality: can better curation extend the wall?

If raw data supply is constrained, perhaps higher-quality data can compensate. The hypothesis: one token of
textbook-quality, carefully curated data is worth ten tokens of random web scraping. If true, better curation
could effectively extend the data supply.

There is evidence for this. Phi-2, a small model (2.7B parameters) trained on carefully curated “textbook-
quality” data, outperformed much larger models on reasoning benchmarks. The Chinchilla paper itself
emphasized data quality, not merely quantity. Training on high-quality data allows models to reach target
performance with fewer tokens.

But quality curation does not create new information. It filters existing information, selecting the highest-value
subset. This is valuable for efficiency, but it does not extend the frontier of what can be learned. If the total
supply of high-quality data is 300 trillion tokens, aggressive curation might extract 50-100 trillion tokens of
genuinely excellent data. This is a 3-6x reduction in effective supply, which trains better models faster. But
it does not make the data wall disappear; it makes the wall arrive sooner.

Consider the extreme: suppose we could perfectly curate the highest-quality data and achieve a 10x efficiency
improvement (one curated token equals ten random tokens). The data wall moves from 2028 to perhaps 2030.
Then what? The perfect curation has been applied. There is no further efficiency to extract. The wall still
stands.

Quality curation is an efficiency optimization, not a solution to scarcity. It helps, but it does not change the
fundamental constraint: high-quality human-generated data is finite.

5.6 When exactly do we run out?

The timeline depends on model appetite (parameters, training tokens) and data supply growth. We can
project based on current trends.

Current state (2024): - Frontier models: 1-2 trillion parameters, trained on 13-18 trillion tokens - Available
high-quality data: ~300 trillion tokens (text + code) - Annual new data generation: ~2-3 trillion tokens

Projected scaling (optimistic): - Models double in parameter count every 12-18 months - Training data
scales proportionally (Chinchilla ratio: 20 tokens per parameter) - Data generation grows linearly at 2-3
trillion tokens/year

GPT-5 equivalent (2025): ~5 trillion parameters, trained on ~100 trillion tokens. Data supply is sufficient
but reserves are depleting.

GPT-6 equivalent (2026-2027): ~10-20 trillion parameters, requiring ~200-400 trillion tokens. Data
supply is exhausted. Training at this scale requires reusing the same data multiple times (overtraining) or
incorporating lower-quality data, both of which degrade performance.

Beyond 2027: Models cannot scale further without synthetic data or radically different data sources. As
Chapter 6 documents, synthetic data leads to model collapse unless carefully mixed with fresh human data,
which is not available at the required scale.

Villalobos and colleagues at Epoch Al estimated the median data wall arrival at 2028, with uncertainty
spanning 2026-2030. Their analysis is the most careful published estimate, and it aligns with the projection
above. Industry insiders (Ilya Sutskever’s “peak data” comment, internal discussions at labs) suggest awareness
of this constraint.

The wall is not a distant theoretical concern. It is a near-term practical constraint that labs are already
encountering.
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5.7 The industry’s response

What are companies doing about the data wall?

Licensing deals: OpenAl, Google, and others are signing deals with publishers (News Corp, Associated
Press, Stack Overflow, Reddit) to license previously inaccessible data. These deals provide perhaps 1-5 trillion
additional tokens, delaying the wall by months, not years.

Scraping expansion: Labs are scraping less-common languages, historical archives, multimedia transcripts,
and other previously untapped sources. This provides marginal gains but lower-quality data.

Synthetic data augmentation: Explored extensively in Chapter 6. The consensus: synthetic data can
regularize and augment but cannot extend the frontier without causing collapse.

Multimodal expansion: Training on images, video, and audio increases data supply by 2-3x in effective
information content. This delays the wall but does not eliminate it, and multimodal data faces its own quality
and copyright constraints.

Test-time compute: As discussed in Chapter 4, inference-time search can improve performance without
new training data, but only for verifiable tasks within the learned distribution.

None of these approaches solves the fundamental problem. They are optimizations that delay the inevitable.
The data wall is not a problem that can be engineered away. It is a conservation law: you cannot learn more
information than the data contains, and the data is finite.

5.8 When demand meets supply

The data wall is not a software problem awaiting an engineering solution. It is a hard constraint: the finite
supply of high-quality human-generated text meets exponentially growing demand. The industry’s response
has been to search for alternatives: synthetic data, data augmentation, curriculum learning, data quality
filtering. The next chapter examines whether these approaches can extend the frontier or merely delay the
inevitable.

5.9 Chapter summary

o High-quality human-generated text totals approximately 300 trillion tokens (books, web, papers, code)

e Current frontier models train on 13-18 trillion tokens; demand grows at ~2.5x per year while supply
grows linearly at 2-3 trillion tokens/year

e The curves cross around 2026-2028, marking the data wall where demand exceeds supply

e Code repositories (300M+ on GitHub) provide trillions of additional tokens but face finite supply,
quality issues, copyright constraints, and Al pollution

o Quality curation (textbook-quality data) improves efficiency but does not create new information; it
filters existing supply, making the wall arrive sooner

o Timeline projection: GPT-5 (2025) barely fits; GPT-6 (2026-2027) exhausts supply; beyond 2027
requires overtraining or synthetic data

o Industry responses (licensing deals, scraping expansion, multimodal data, test-time compute) delay the
wall by months to 1-2 years, not decades

o The Chinchilla result demonstrates that undertrained models (too many parameters for available data)
perform worse, making the data wall a hard constraint

o This is not a software problem but a conservation law: you cannot extract more information from a
corpus than it contains, and the corpus is finite
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The ouroboros problem

“The serpent that eats its own tail” — Ancient symbol

The obvious response to the data wall is to generate more data. If human-produced text is finite, perhaps
model-produced text can fill the gap. This idea has a name in the industry: synthetic data augmentation. It
also has a problem.

6.1 Model collapse

Shumailov and colleagues published the definitive analysis in Nature in 2024. They showed that language
models trained on data generated by other language models (or recursively by themselves) undergo model
collapse: a progressive degradation of the output distribution that unfolds in two phases.

In the early phase of collapse, the distribution tails disappear. Rare events, minority patterns, unusual
phrasings, low-frequency but genuine features of the original distribution, are the first casualties. The model
converges toward the mode of the distribution, losing the diversity that characterized the original data. In
practical terms: the outputs become more generic, more repetitive, more “average.”

In the late phase, the model loses most of its variance entirely, converging toward something approaching
a delta function: a distribution concentrated on a single output pattern. By this stage, generated text is
incoherent and repetitive.

The quantitative trajectory is striking. Shumailov and colleagues measured perplexity degradation across
generations of recursive training. By generation 4 to 6, perplexity has degraded by 60 to 80 percent. The
outputs are recognizably collapsed. The process is not gradual in the way that might allow careful monitoring
and correction; it accelerates as each generation’s training data is further from the original distribution.

6.2 Why collapse happens

The mechanism is iterated lossy compression. A generative model is an imperfect estimator of its training
distribution. It assigns slightly too much probability to common patterns and slightly too little to rare ones.
When the next model trains on this slightly biased output, the bias compounds. Common patterns become
more common; rare patterns become rarer. Across multiple generations, the rare patterns vanish entirely.
This is not a bug in any particular model architecture. It is a mathematical consequence of iterating any
imperfect estimator: each application of the map pushes the distribution toward lower entropy.

The ouroboros, the serpent eating its own tail, is an apt metaphor. A system that feeds on its own output
converges to a distribution with lower entropy than its input. The information lost at each step is not
recoverable from the output alone.
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6.3 The mixing solution

Gerstgrasser and colleagues showed in 2024 that collapse can be avoided if the original human-generated
data is preserved and mixed with synthetic data at each generation. This is a genuine finding and should
be credited honestly. But it addresses a different problem than the one scaling needs to solve. Preserving
original data alongside synthetic data prevents regression below the original model’s performance. It does
not extend the frontier. The model trained on a mixture of real and synthetic data does not outperform the
model trained on real data alone, because the synthetic data contains no information that was not already in
the original model. Synthetic data can regularize, can provide augmented views of existing patterns, can
improve robustness. It cannot create new knowledge.

6.4 The information conservation law

The data wall is not a software problem awaiting an engineering solution. It is a conservation law: you
cannot extract more information from a corpus than the corpus contains, and you cannot extend a corpus by
generating text from a model trained on that corpus. The information is already inside the model. Writing it
out and reading it back in does not create more of it.

6.5 Data decay in an Al-saturated internet

There is a second, more insidious problem. As Al-generated content proliferates across the internet, the
quality of future training data degrades. Estimates suggest that by 2026, the majority of web content may be
Al-generated. If future models scrape this Al-saturated web, they will be training on a mixture of human
and synthetic data, unintentionally ingesting model collapse into their training pipeline.

The snake begins eating its tail not by design, but by accident. The commons is polluted. High-quality
human-generated text, the irreplaceable substrate of language model training, becomes increasingly difficult
to separate from synthetic imitations. This is not a hypothetical future risk. It is already happening.

6.6 Data decay: the evidence

The AI pollution of the internet is not speculation. It is measurable, observable, and accelerating.

Stack Overflow: In late 2022, Stack Overflow banned ChatGPT-generated answers after moderators
observed a flood of plausible-sounding but often incorrect responses. Analysis by the community found
that Al-generated answers had higher rates of subtle errors, misleading explanations, and hallucinated
references. Despite the ban, enforcement is difficult: distinguishing Al-generated text from human-written
text is non-trivial, and determined users continue posting Al-generated content. By mid-2023, estimates
suggested 10-30% of new answers contained Al-generated components. The signal-to-noise ratio is degrading.

Wikipedia: Wikipedia editors have engaged in ongoing battles over Al-generated content. The English
Wikipedia’s policy prohibits submitting Al-generated text without human verification, but enforcement relies
on volunteer moderators detecting subtle tells. Multiple studies have found Al-generated Wikipedia edits
slipping through: articles created by LLMs, biographies with hallucinated details, citations to non-existent
papers. The problem is worse in smaller language Wikipedias with fewer active moderators. Wikipedia’s
quality as a training corpus is declining.

Academic preprint servers: ArXiv, bioRxiv, and other preprint servers have seen a surge in papers with
Al-generated sections or entirely Al-generated content. These range from papers using ChatGPT to write
summaries (which may be acceptable) to entirely synthetic papers with fabricated results (which are not).
Detection is difficult: modern LLMs generate grammatically correct, stylistically appropriate text that passes
superficial review. Several high-profile retractions have occurred after peer review caught fabricated data in
Al-generated papers, but many likely slip through.
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News and content farms: Low-quality news sites and content farms have adopted Al generation at
scale. Some sites publish hundreds of Al-generated articles daily, optimized for SEO but providing minimal
information value. Google’s search index is increasingly contaminated with this content. While Google’s
algorithms attempt to penalize low-quality content, the arms race between Al generation and detection favors
generation. The median quality of web text is declining.

Social media: Twitter, Reddit, and other platforms report surges in bot activity using LLM-generated text.
These bots engage in conversations, post comments, and generate content that appears human. Detection is
difficult at scale. Reddit’s r/SubSimulatorGPT2 demonstrates how convincing Al-generated posts can be;
distinguishing them from human posts requires careful attention. As LLMs improve, the distinction becomes
harder.

Code repositories: GitHub Copilot and competitors have led to a surge in Al-assisted code. While much
of this code is functional, it also propagates common bugs, deprecated patterns, and security vulnerabilities
that the model learned from training data. Code review catches some of this, but much is committed. Future
models training on this code will learn not only from human-written code but from Al-generated code that
may contain systematic errors.

Quantitative estimates: A 2023 study by researchers at AWS AI Labs estimated that by 2025, 50-90% of
new text on the internet may be Al-generated or Al-assisted, depending on the domain. News articles, social
media posts, and blog content are highest; academic papers and books are lowest (but still significant). By
2027, the median web page scraped for training data may be majority Al-generated.

This is not a hypothetical scenario in which future models might encounter data pollution. It is happening
now. Models trained in 2025 and beyond will ingest this polluted data unless extraordinary effort is made
to filter it out. But filtering is difficult: AI detection tools have false positive rates of 5-20%, meaning
that aggressive filtering discards significant amounts of genuine human-generated content along with the
Al-generated noise.

The ouroboros has begun. The snake is eating its tail. The commons is degraded.

6.7 Where synthetic data actually works

The picture painted so far is grim: synthetic data causes collapse, and Al pollution is degrading the training
commons. But there are domains where synthetic data genuinely helps. Understanding where and why
illuminates the fundamental constraint.

Image augmentation: In computer vision, synthetic data is standard practice. An image can be rotated,
flipped, cropped, color-shifted, and noise-added to produce augmented examples. These transformations
preserve the label (a rotated cat is still a cat) while increasing apparent dataset size. This works because
the transformations are known, controlled, and do not introduce new information—they reveal invariances
already present in the data. This is data augmentation, not data creation.

Physics simulations: In robotics, synthetic environments (simulators) generate unlimited training data
for robot control policies. A robot arm learning to grasp objects can train in simulation, where thousands
of parallel attempts cost nothing. This works because physics engines can accurately model rigid body
dynamics, collisions, and sensor noise. The synthetic data is grounded in the same physical laws the robot
will encounter in reality. Transfer from simulation to reality (“sim-to-real”) requires domain adaptation but
is often successful.

Formal domains: Synthetic data works well in mathematics, logic, and other formal systems. A theorem
prover can generate unlimited problem-solution pairs by constructing proofs. A compiler can generate
unlimited code-output pairs by executing programs. These synthetic examples are guaranteed correct by
construction, because the domain has formal semantics. Models trained on synthetic formal data (e.g.,
AlphaGeometry, which generates synthetic geometry proofs) achieve strong performance.

Constraint-based generation: When the generation process is constrained by known rules, synthetic data
can be valuable. For example, generating SQL queries from schemas, generating chemical formulas that obey
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valence rules, generating chess positions that obey game rules. The synthetic data is valid by construction,
and the model learns the rule structure.

What these successes have in common: 1. The generation process is grounded in known, stable rules
(physics, mathematics, formal semantics). 2. The synthetic data is used for augmentation or exploration
within a bounded domain, not frontier extension. 3. Correctness can be verified independently (simulation
matches reality, proofs are valid, code compiles).

Where synthetic data fails: 1. Open-ended natural language generation: there are no formal rules, no
ground truth, no verifier. 2. Frontier knowledge creation: synthetic data cannot contain information not in
the generating model. 3. Unverifiable domains: tasks where correctness cannot be checked automatically.

The constraint is clear: synthetic data works when grounded in verifiable structure but fails when asked to
extend beyond the learned distribution. For language modeling, where the goal is to match the unbounded
diversity of human-generated text, synthetic data leads to collapse unless carefully mixed with fresh human
data—which brings us back to the data wall.

The ouroboros is not a solution to the data wall. It is the mechanism by which the wall becomes permanent.

6.8 Chapter summary

o Shumailov et al. (2024) demonstrated that models trained on Al-generated data undergo model collapse:
distribution tails vanish, outputs become generic, diversity degrades

e Collapse happens because models are imperfect estimators; iterating any lossy compression pushes
distributions toward lower entropy

o By generation 4-6 of recursive training, perplexity degrades 60-80%; the collapse accelerates rather than
gradual

e Mixing real and synthetic data prevents regression but does not extend the frontier; synthetic data
contains no information not already in the model

e The information conservation law: you cannot create knowledge by training on your own outputs

o Data decay is observable now, not future speculation: Stack Overflow (10-30% AI content), Wikipedia
(AT edits slip through), arXiv (Al-generated papers), news sites (Al content farms)

o Estimates suggest 50-90% of new internet text may be Al-generated by 2025-2027; future models will
train on polluted data

o Al detection tools have 5-20% false positive rates; aggressive filtering discards genuine human content
along with synthetic noise

e Synthetic data works in constrained domains: image augmentation, physics simulations, formal systems
(math, code), constraint-based generation

e These successes rely on grounded rules, verifiable correctness, and bounded domains; they do not
generalize to open-ended natural language

e The ouroboros is not a solution; it is the mechanism by which the data wall becomes permanent



Part 111

The realistic horizon

43






Chapter 7

The stagnation thesis

“The low-hanging fruit has been picked.” — Tyler Cowen

The previous six chapters have established a series of hard constraints. Each constraint alone would slow
progress. Together, they compound into something more decisive: a ceiling. This chapter argues that frontier
model capabilities will plateau within the next 3-5 years, not because we stop trying, but because we hit the
convergence of limits that cannot be overcome on the current path.

7.1 The convergence of constraints

The gaps and bottlenecks are not independent problems. They interlock, and each attempted solution runs
into another wall.

The learning instances gap. Chapter 1 established that biological intelligence required 102> learning
instances at the optimistic vertebrate-only estimate. Current training runs perform roughly 107 gradient
updates. The gap is eighteen orders of magnitude.

The architectural bottleneck. Chapter 2 demonstrated that one-shot learning with catastrophic forgetting
cannot replicate the continuous consolidation cycle that enabled biological knowledge accumulation. Even if
we could generate 10?° learning instances, the architecture cannot process them the way biology did. The
path matters, not just the quantity.

The sensory bandwidth gap. Chapter 3 showed that text is a 1078 compression of embodied experience.
Language models train on the fraction of knowledge that survived articulation, not the full sensory bandwidth
that grounded biological learning. The training signal lacks the information content.

Diminishing returns. Chapter 4 proved mathematically that each doubling of performance under the
observed power law requires a million-fold increase in compute. Progress does not stop, but it decelerates to
asymptotic approach toward a floor.

The data wall. Chapter 5 documented that high-quality human-generated text is finite at roughly 300
trillion tokens. The wall arrives around 2028. Models cannot scale beyond the data supply, and undertrained
models perform worse, not better.

The ouroboros trap. Chapter 6 showed that synthetic data cannot extend the frontier. Models trained on
their own outputs undergo collapse. The information conservation law holds: you cannot create knowledge
from itself. Meanwhile, Al-generated content pollutes the web, degrading future training data quality.

These constraints compound. You cannot solve the data wall with synthetic data because of model collapse.
You cannot brute-force the learning instances gap because of diminishing returns and the data ceiling. You
cannot replicate embodied grounding because text lacks the information content, and multimodal observation

45



46 CHAPTER 7. THE STAGNATION THESIS

is not interaction. You cannot overcome the architectural bottleneck without redesigning the learning
paradigm, which would require starting from scratch with no guarantee of success.

The walls close in from all sides.

7.2 What stagnation looks like

Stagnation is not a hard stop. It is a deceleration to asymptotic improvement. The trajectory is visible in
the historical record.

GPT-2 (2019): 1.5 billion parameters, impressive text generation, clearly superhuman at next-token prediction
but limited reasoning capability.

GPT-3 (2020): 175 billion parameters, emergent few-shot learning, surprising breadth, but still fragile on
tasks requiring robust reasoning.

GPT-4 (2023): estimated 1+ trillion parameters, multimodal, passes professional exams, writes working code,
carries on sophisticated conversations. A large jump from GPT-3.

The jump from GPT-3 to GPT-4 took three years and required roughly 100x more compute. The improvement
was real but not revolutionary in kind, only in degree. GPT-4 is a better predictor than GPT-3. It is not a
different kind of system.

GPT-5, when it arrives, will be better still. It will saturate more benchmarks, pass more exams, write cleaner
code. But the improvement will be smaller than the GPT-3 to GPT-4 jump, because we are further up the
power law curve where gains are expensive. Each subsequent model will show diminishing improvements.

By GPT-6 or GPT-7, the gains will be imperceptible to most users. The model will have approached the
asymptote: the best predictor possible given text training data, within the constraints of one-shot learning,
under the power law that governs scaling.

7.3 The benchmark saturation cycle

Benchmarks will continue to improve, but benchmarks measure what is measurable, not what matters. When
GPT-4 saturated undergraduate-level exams, the community created graduate-level benchmarks. When those
saturate, we will create expert-level benchmarks. When those saturate, we will create adversarial benchmarks
specifically designed to expose model weaknesses.

This is Goodhart’s law applied to Al: when a measure becomes a target, it ceases to be a good measure.
Models optimize for benchmarks, and benchmarks become proxies for capabilities rather than measurements
of them. A model that scores 95% on a reasoning benchmark has not necessarily learned to reason; it has
learned the statistical regularities of reasoning-like text.

The saturation cycle is already visible. MMLU, a broad knowledge benchmark, was considered challenging
when introduced. Frontier models now exceed 85%. The response: create harder benchmarks. But harder is
not the same as more meaningful. Eventually, every benchmark becomes a game that models learn to play
through pattern matching on training data.

The underlying question is whether performance on text-based benchmarks, at any level of difficulty,
constitutes the capabilities we actually care about: robust reasoning, causal understanding, novel problem-
solving, grounded common sense. The stagnation thesis says no. Benchmarks will improve asymptotically,
but the gap between “excellent text predictor” and “general intelligence” remains.

7.4 The capability plateau

Stagnated frontier models will plateau at a level best described as “impressively competent within distribution,
fragile outside it.”
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Where they excel:

e Text generation and summarization: models are already near-human on these tasks and will approach
indistinguishability.

e Code completion for common patterns: standard libraries, well-documented APIs, conventional algo-
rithms.

e Question answering on well-documented topics: anything in the training corpus with sufficient examples.

o Translation between languages: statistical regularities are strong, performance is already high.

¢ Classification and pattern recognition: given labeled examples, models generalize well.

e Style matching and tone adaptation: mimicking writing styles is a pattern-matching task.

Where they remain weak:

e Novel reasoning requiring grounding not present in training data: models cannot deduce from first
principles what they have not seen.

e Physical intuition: a model that has never interacted with objects cannot reliably predict “what happens
if I drop this?”

e Causal understanding: correlation is in the data, causation is not. Models confuse the two.

e Genuine creativity: true novelty requires generating patterns not present in training data. Models
recombine seen patterns.

e Robust common sense in unfamiliar situations: common sense is grounded in embodied experience.
Text captures some of it but not the substrate.

e Out-of-distribution robustness: adversarial examples, distribution shift, novel contexts all expose
brittleness.

This is not a temporary limitation awaiting more scale. It is the consequence of training on text, using
one-shot learning, without embodied grounding. Scaling makes the within-distribution performance better,
but it does not close the gap to capabilities requiring information not present in text.

7.5 The “good enough” threshold

Stagnation is not failure. For many applications, even a plateau at current frontier capability levels delivers
enormous value.

Most enterprise tasks are well-documented and within-distribution. Code completion for standard libraries is
useful even if the model cannot invent new algorithms. Email drafting and report summarization are useful
even if the model cannot generate truly novel insights. Customer service for common questions is useful even
if the model fails on edge cases. Translation is useful even if the model occasionally makes errors on idioms.

The economic value of “GPT-4 level but no better” is measured in trillions of dollars of productivity gains.
Legal document review. Medical literature summarization. Software development acceleration. Content
generation at scale. Personalized tutoring for standard curricula. These applications do not require AGI.
They require competent text manipulation, and stagnated frontier models deliver that.

The stagnation thesis is not “Al is useless.” It is “Al will not reach AGI on the current path, but will
deliver enormous value at sub-AGI capability levels.” The hype promised AGI by 2030. The reality delivers
impressive, economically transformative, but decidedly non-general intelligence.

7.6 When do we hit each wall?

We can project timelines for each constraint based on current trajectories.

Data wall: 2026-2028. High-quality text is finite, model appetite grows exponentially, the curves cross
within this window. Villalobos and colleagues estimated 2028 at the median. Some optimism comes from
multimodal data extending the supply, but this delays the wall by 1-2 years, not a decade.
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Compute ceiling: 2028-2030. The power law requires 10° more compute for each doubling of performance.
Current frontier models consume 1026 FLOP. To double performance again requires 1032 FLOP. This exceeds
projected global AT compute capacity in the next 5 years. Compute growth is slowing as Moore’s Law
decelerates and as energy and manufacturing constraints bind.

Capability saturation: 2027-2032. As models hit the data wall and compute ceiling, capability improvements
decelerate. The compounding constraints converge. By 2030, frontier models will be measurably better than
GPT-4, but not categorically different. By 2032, the improvements become marginal.

These are not precise predictions. They are informed projections based on observed trends and established
constraints. The timeline could shift by a few years in either direction. But the qualitative outcome, stagnation
within the next decade, is robust to uncertainty in the details.

7.7 Historical parallels

Technological progress often follows an S-curve: slow initial growth, rapid exponential improvement, then
deceleration to a plateau as fundamental limits bind. Al is not the first technology to encounter this pattern.

Flight speed. The sound barrier was broken in 1947. By 1960, aircraft routinely flew at Mach 2. The SR-71,
flying at Mach 3.3, set records in the 1960s that still stand. Hypersonic flight exists but remains experimental.
Why? Because physics imposes hard limits. Air resistance scales with the square of velocity, heating scales
with the cube. Beyond Mach 3, the engineering challenges become extraordinary and the returns diminish.
We did not stop trying. We hit a wall.

Moore’s Law. Transistor density doubled every two years from 1970 to 2010, driving exponential compute
growth. Around 2010, the law began to slow. By 2020, the doubling time had stretched to 3-4 years.
Why? Because quantum mechanics imposes limits at atomic scales. Gates are now a few nanometers wide,
approaching the size of atoms. Further miniaturization faces physical barriers. We have not stopped trying.
We are hitting a wall.

Energy efficiency of computation. The Landauer limit, derived from thermodynamics, sets a floor on the
energy required to erase a bit: kTIn2 ~ 3 x 102! joules at room temperature. Current DRAM operates
roughly 10° times above this limit. Progress toward the limit has been exponential for decades, but the limit
is absolute. No technology can violate thermodynamics. We will approach the Landauer limit asymptotically
but never breach it.

Al scaling faces analogous limits: finite data, power law diminishing returns, architectural bottlenecks rooted
in the physics of computation. The pattern is familiar. Rapid progress during the exponential phase, then
deceleration as the limits bind.

7.8 The emergence argument

Perhaps the strongest counterargument to stagnation is emergence: the observation that capabilities appear
suddenly at scale that were not present or predictable at smaller scales. Wei and colleagues documented
numerous examples in their 2022 paper: chain-of-thought reasoning, in-context learning, multi-step arithmetic,
instruction following. These capabilities were not explicitly programmed or trained; they emerged from
scaling.

The emergence phenomenon is genuine and was surprising. It suggests that scaling unlocks latent structure
in the training data that smaller models cannot access. This is important: it demonstrates that scale is not
merely quantitative improvement but can produce qualitative capability jumps.

But emergence has limits, and understanding those limits is critical to assessing whether it can overcome the
gaps documented in earlier chapters.

Emergence within the training distribution. Every documented emergent capability can be traced
to patterns present in the training data. In-context learning emerged because the training corpus contains
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examples of learning from context (few-shot examples in documentation, tutorials that build on previous
concepts). Chain-of-thought reasoning emerged because the training data contains worked examples with
explicit reasoning steps (textbooks, Stack Overflow answers, math forums). Arithmetic emerged because
numerical patterns appear throughout text.

These are not trivial pattern-matching tasks. The model had to learn abstractions, generalizations, and
compositional structure to exhibit these capabilities. But they are still recognition of patterns present in text,
not generation of capabilities absent from text.

The “sparks of AGI” debate. Bubeck and colleagues at Microsoft Research published a provocative paper
in 2023 titled “Sparks of Artificial General Intelligence: Early experiments with GPT-4.” They documented
impressive performance on novel tasks: drawing unicorns, solving theory-of-mind problems, generating Python
code to visualize concepts. They argued that GPT-4’s breadth and flexibility suggested early signs of general
intelligence.

The paper sparked intense debate. Critics pointed out that all demonstrated capabilities, while impressive,
involved recombination of patterns in the training data. Drawing a unicorn requires understanding “unicorn”
(fantasy creature, horse-like body, single horn, often depicted in specific styles) and “drawing” (generating
vector graphics code or describing visual appearance). Both concepts appear extensively in training data.
The task requires creative synthesis, which the model achieves, but not generation of concepts genuinely
absent from training.

Theory-of-mind tasks (understanding that others have beliefs different from one’s own) appeared more
challenging. But Sally-Anne tests and similar tasks appear in psychology literature, education materials,
and discussions of cognitive development—all in the training corpus. The model likely learned the structure
of these problems from seeing many examples, not by developing actual theory of mind through social
interaction.

The “sparks” paper is valuable because it documents the frontier of what scaling has achieved. But it does
not demonstrate that further scaling will produce capabilities qualitatively beyond what patterns in text
can support. Emergence unlocks latent structure in training data; it does not create structure absent from
training data.

Can embodied grounding emerge? This is the critical question. Chapters 1-3 documented that biological
learning operated over 10° bits per second of sensory bandwidth, grounded in physical interaction with
consequences (survival, reproduction). Text captures perhaps 10~® of this experience. Can the missing
99.9999% emerge from scaling text prediction?

There is no evidence for this. The failures documented in Chapter 1 (novel physical reasoning, causal inference,
compositional generalization in unfamiliar contexts, robust common sense) persist in GPT-4 despite its scale.
These failures cluster precisely where embodied grounding is required. Scaling from GPT-3 to GPT-4 reduced
the failure rate but did not eliminate the failure mode.

The hypothesis that embodied grounding will emerge from text alone requires believing that text contains the
information needed for physical intuition, even though that information was explicitly compressed away when
experience was articulated into language. This is not impossible, but it is a strong claim requiring evidence.
The current evidence suggests the opposite: the gaps persist despite scaling.

7.9 GPT-5 and beyond: falsifiable predictions

The stagnation thesis makes predictions that can be tested against future model releases. If GPT-5 (or
its equivalent from other labs) appears in 2025-2026, we can check whether it conforms to the predicted
trajectory.

Prediction 1: Benchmark saturation. GPT-5 will achieve higher scores on standard benchmarks (MMLU,
HumanEval, etc.) than GPT-4, but the improvement will be smaller than the GPT-3 to GPT-4 improvement.
Expect 5-15 percentage point gains on MMLU (from GPT-4’s ~86% toward 90-95%), not the 27-point jump
from GPT-3 to GPT-3.5.
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Prediction 2: Persistent failure modes. The failures documented in Chapter 1 will persist. GPT-5
will still struggle with: - Novel physical reasoning not present in training data (e.g., predicting outcomes of
unfamiliar mechanical configurations) - Robust causal inference beyond memorized patterns - Compositional
generalization in truly novel contexts - Out-of-distribution adversarial robustness

The failure rate will decrease, but the failure mode will remain. The model will be more often correct but not
qualitatively more robust.

Prediction 3: Diminishing qualitative improvement. GPT-4’s release felt like a capability jump: it
could pass professional exams, write complex code, handle multimodal inputs. GPT-5 will feel like refinement:
better writing quality, fewer hallucinations, faster inference, but not a new category of capability. Users will
struggle to articulate what GPT-5 can do that GPT-4 could not, beyond “it’s better.”

Prediction 4: Training data exhaustion. GPT-5 will either (a) train on a similar token count to GPT-4
(~15-20 trillion tokens) but with better curation and architectural improvements, or (b) attempt to scale
beyond 100 trillion tokens and encounter quality degradation from data reuse or lower-quality sources. If (b),
performance on some benchmarks may plateau or even regress slightly.

Prediction 5: Economic value plateau. GPT-5 will be economically valuable (better coding assistants,
better writing tools, better customer service bots) but not transform additional industries beyond what
GPT-4 already enabled. The economic impact curve is flattening as the technology reaches saturation in
applications where text manipulation suffices.

How to falsify the stagnation thesis: If GPT-5 demonstrates genuinely novel capabilities not derivable from
patterns in text—robust physical reasoning, reliable causal inference, zero-shot compositional generalization
to structures it has never seen, stable lifelong learning without catastrophic forgetting—then stagnation is
falsified. If GPT-5 delivers qualitative jumps comparable to GPT-3 to GPT-4, and if subsequent models
continue delivering such jumps without hitting the data wall, then the thesis is wrong.

But if GPT-5 conforms to the predictions above—incremental benchmark gains, persistent failure modes,
diminishing qualitative improvement, data constraints binding—then the stagnation thesis is supported. The
null hypothesis should be the trend: deceleration along a power law toward an asymptote.

7.10 The case against

“Emergent capabilities suggest we are on the cusp of a phase transition. More scale will unlock
qualitatively new behaviors.”

Emergent capabilities are real, but they are not magic. Wei and colleagues documented that certain capabilities
appear suddenly at scale: chain-of-thought reasoning, in-context learning, arithmetic. These were surprising,
and they demonstrated that scale unlocks latent structure in the training data.

But emergence within text does not imply that capabilities not present in text will also emerge. In-context
learning emerged because the training data contains examples of learning from context. Arithmetic emerged
because the training data contains numerical patterns. These are still pattern matching, just at higher
abstraction. There is no evidence that capabilities requiring embodied grounding, causal reasoning not present
in text, or true novelty will emerge from scaling text prediction, because the training signal does not contain
them.

“Industry leaders are confident. They are building toward AGI.”

Industry leaders have strong financial incentives to project confidence. Their companies are valued on the
assumption of continued exponential progress toward AGI. Admitting stagnation would collapse valuations.
This does not mean they are lying; it means their incentives are not aligned with dispassionate assessment.

Some leaders genuinely believe AGI is near. Belief is not evidence. The constraints documented in this book
are empirical: finite data, power law diminishing returns, architectural bottlenecks, information-theoretic
limits. Optimism does not override mathematics.
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7.11 Why this diverges from the narrative

The dominant narrative in 2024-2025 is exponential progress toward AGI within a decade. This narrative
serves many purposes: attracting investment, recruiting talent, justifying massive compute expenditures,
generating media attention.

But stagnation is not failure. It is a realistic assessment of what the current path delivers. Frontier models
plateau at a capability level that is genuinely impressive and economically transformative, even if it is not
AGI. The sooner we accept this, the faster we can redirect resources toward what actually works: making
stagnated-but-useful models radically cheaper, faster, and more accessible.

That is the subject of the next chapter.

7.12 Chapter summary

o Frontier capability gains will plateau within 3-5 years (2027-2032) due to compounding constraints
from Chapters 1-6

e The constraints interlock: data wall + ouroboros trap + diminishing returns + architectural bottleneck
+ sensory bandwidth gap

e Stagnation is not a hard stop but deceleration to asymptotic improvement; GPT-3 to GPT-4 was a
larger jump than GPT-4 to GPT-5 will be

e Benchmark saturation cycle: as models saturate existing tests, harder benchmarks are created, but this
measures test-taking ability not robust intelligence

o Stagnated models will excel within distribution (text generation, code completion, Q&A on documented
topics, translation) but remain fragile outside distribution

o The “good enough” threshold: GPT-4 level capability delivers enormous economic value (trillions in
productivity) even without reaching AGI

« Historical parallels (flight speed, Moore’s Law, computational energy efficiency) show S-curve patterns
where fundamental limits cause deceleration

o Emergent capabilities (chain-of-thought, in-context learning, arithmetic) are real but operate within
training distribution; no evidence that embodied grounding will emerge from text alone

e Bubeck et al’s “Sparks of AGI” documented impressive GPT-4 performance but all demonstrated
capabilities involve recombination of training data patterns

o Falsifiable predictions for GPT-5: benchmark saturation (5-15pp gains not 27pp), persistent failure
modes, diminishing qualitative improvement, data constraints binding

e The stagnation thesis is falsified if GPT-5+ demonstrates genuinely novel capabilities not derivable
from text patterns

o Industry incentives (valuations depend on AGI narrative) create pressure to project confidence despite
empirical constraints
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Chapter 8

The efficiency revolution

“The future is already here — it’s just not evenly distributed.” — William Gibson

Frontier model capabilities will stagnate. But efficiency will not. While the performance ceiling is real, the
cost to reach that ceiling will collapse. This chapter makes the case that within 10-15 years, models at
current frontier quality will run locally on consumer devices at near-zero marginal cost. This is the genuine
revolution: not AGI, but impressive machines everywhere.

8.1 The efficiency gap

The gap between capability and accessibility is enormous.

Current state of frontier models: - Training cost: $100M-$500M in compute expenditure for a single run
- Inference infrastructure: requires datacenter deployment with thousands of GPUs - Access model: gated
through API endpoints or subscription services - Latency: network round-trips add 100-500ms, queuing adds
more during peak usage - Privacy: all queries transit through corporate servers - Marginal cost: $0.01-$0.10
per 1000 tokens, depending on model size

GPT-4 level intelligence exists, but most of the world cannot run it locally. The model weights occupy hundreds
of gigabytes. Inference requires hardware most consumers do not own. The intelligence is concentrated in
datacenters, accessed through network pipes.

This centralization is not permanent. It is an artifact of the current efficiency level. As efficiency improves,
the frontier moves from datacenter to device.

8.2 Training cost collapse

Training frontier models is expensive primarily because we use brute force: massive models, enormous datasets,
one-shot learning on hardware optimized for throughput rather than efficiency. Multiple pathways exist to
reduce this cost by orders of magnitude.

8.2.1 Algorithmic improvements

Better architectures. The transformer, introduced in 2017, was not designed for efficiency. It was designed
for expressiveness and parallelizability. Attention is quadratic in sequence length. Feed-forward layers are
dense and parameter-heavy. These were acceptable tradeoffs when compute was the bottleneck, but as
efficiency becomes the focus, architectural innovations deliver gains.

Mixture of experts (MoE) routes different inputs through different subnetworks, activating only a fraction of
total parameters for any given token. Models like GPT-4 reportedly use MoE, achieving better performance
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per compute than dense models. Sparse models carry more parameters but use fewer during inference,
reducing effective cost.

State space models (Mamba, Hyena) replace attention with linear-time sequence processing, eliminating the
quadratic bottleneck. Early results suggest they match transformer performance on long sequences while
using far less compute. Whether they scale to frontier quality remains an open question, but the direction is
promising.

Improved optimizers. Gradient descent is not the only way to train neural networks, just the most
established. Second-order methods, which use curvature information, converge faster but require more
memory. Approximate second-order methods (K-FAC, Shampoo) capture some benefits with manageable
overhead. Each generation of optimizers reduces the number of training steps required to reach a target loss.

Curriculum learning. The order in which a model sees data affects how efficiently it learns. Training on
easy examples first, then harder ones, allows faster convergence than random sampling. Careful curriculum
design can reduce required training compute by 2-5x.

Knowledge distillation. A large teacher model can train a smaller student model to match its performance
through distillation: the student learns from the teacher’s outputs rather than raw data. The student is
cheaper to run, and distillation is cheaper than training from scratch. Distillation does not extend the
capability frontier, but it democratizes access to frontier capabilities at lower cost.

Conservative projection: Compounding algorithmic improvements deliver 10-50x training cost reduction
over 10 years.

8.2.2 Hardware improvements

Next-generation accelerators. NVIDIA’s H100 GPU, released in 2022, is already being superseded by
H200 and the upcoming B100 series. Each generation delivers roughly 2-3x improvement in FLOP per watt
and FLOP per dollar. This is not Moore’s Law, which has slowed, but it is sustained progress driven by
specialized AT architectures, improved memory bandwidth, and better chip design.

AMD, Google (TPU), Cerebras, Graphcore, and others compete in the accelerator market. Competition
drives innovation. Over 10 years, expect 10-30x improvement in training efficiency from hardware alone.

Neuromorphic approaches. IBM’s NorthPole and Intel’s Loihi represent a different paradigm: analog
computation with co-located memory. These chips achieve 10-25x better energy efficiency than GPUs for
specific workloads, primarily inference. Training on neuromorphic hardware remains experimental, but if
successful, it could deliver another 10-100x efficiency gain.

Memory technology. HBM3 is the current standard for high-bandwidth memory. HBM4 is in development,
promising higher capacity and lower energy per access. Memristors, which store weights in resistance states,
remain in the lab but show potential for orders-of-magnitude improvement in energy efficiency. Whether
memristors transition from research to production within 10 years is uncertain, but the trajectory is promising.

Conservative projection: Hardware improvements deliver 10-30x training cost reduction over 10 years.

8.2.3 Compounding training efficiency

Algorithmic and hardware gains multiply. Conservative estimates: 10 x 10 = 100x reduction in training cost
over 10 years. Optimistic estimates: 50 x 30 = 1500x reduction.

What costs $100M today might cost $1M in 10 years, or potentially as little as $100K in the optimistic case.
This does not extend the capability frontier (stagnation still applies), but it makes reaching the frontier far
more accessible. More organizations can afford to train frontier models. Fine-tuning becomes economically
feasible for domain-specific applications. The centralization of frontier model development begins to erode.
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8.3 Inference cost collapse

Training happens once. Inference happens billions of times. Inference efficiency is where the revolution
actually occurs.

8.3.1 The inference bottleneck

Inference cost in transformers is dominated by three factors:

1. Memory bandwidth. Moving weights from memory to compute units costs energy and time. For
large models, memory access dominates arithmetic operations.

2. Precision overhead. Models typically use 16-bit floating-point weights. Higher precision is unnecessary
for inference but remains standard because training requires it.

3. Quadratic attention. Transformer attention scales as O(n?) in sequence length. Long contexts
become prohibitively expensive.

Each bottleneck has solutions.

8.3.2 (Quantization: reducing precision

Weights trained at 16-bit precision retain most of their functionality when compressed to lower precision.
This is quantization: representing weights with fewer bits.

8-bit quantization: Reduces memory footprint and bandwidth by 2x. Quality loss is minimal for most
tasks. This is already standard in production deployments.

4-bit quantization: Reduces memory by 4x. Quality degradation is measurable but acceptable for many
applications. Recent methods (GPTQ, AWQ) achieve surprisingly good 4-bit performance.

2-bit quantization: Reduces memory by 8x. Quality loss becomes significant, but the model remains
functional for simpler tasks.

1-bit (binary) quantization: Each weight is +1 or -1. Reduces memory by 16x. Recent work (BitNet)
demonstrates that carefully trained 1-bit models retain substantial capability, though below full-precision
frontiers.

Quantization is not free. Lower precision reduces quality. But the tradeoff is favorable: a 4-bit quantized
GPT-4 might perform at 90-95% of full quality while running at 4x lower cost. For most applications, this is
acceptable.

Projection: Quantization delivers 4-16x inference cost reduction with acceptable quality loss.

8.3.3 Sparsity: activating less

Most neural network activations are near zero. Sparse models explicitly zero out connections, activating only
a fraction of the network for any given input. Mixture of experts is one form of sparsity. Magnitude-based
pruning is another.

Sparse models reduce computation proportionally to sparsity. A 90% sparse model uses 10% of the compute
of a dense model. The challenge is maintaining quality during pruning. Careful techniques (gradual pruning
during training, structured sparsity that matches hardware) achieve high sparsity with minimal quality loss.

Projection: Sparsity delivers 5-10x inference cost reduction.

8.3.4 Architectural efficiency

Transformers are not the final word in neural architectures. Alternatives that reduce attention cost are under
active development.
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State space models: Mamba, Hyena, and related models replace quadratic attention with linear-time
updates. Early results suggest they match transformer quality on long-context tasks while using far less
compute. If this holds at frontier scale, state space models could deliver 10-100x reduction in inference cost
for long sequences.

Mixture of experts: Route inputs through specialized subnetworks. Only a fraction of total parameters
activate per token, reducing effective compute.

Local attention: Not every token needs to attend to every other token. Local attention (attending only
to nearby tokens) plus occasional global attention (attending to key tokens) reduces quadratic cost while
preserving most capability.

Projection: Architectural improvements deliver 5-20x inference cost reduction over 10 years.

8.3.5 Compounding inference efficiency
Again, the gains multiply. Conservative: 4 x 5 x 5 = 100x. Optimistic: 16 x 10 x 20 = 3200x.

What costs $0.05 per inference today might cost $0.0005 in 10 years (conservative) or $0.000015 (optimistic).
Near-zero marginal cost. Trillions of inferences become economically feasible.

8.4 From datacenter to device

When inference cost drops 100-1000x, models that today require datacenter infrastructure become runnable
on consumer hardware.

Timeline projection:

2026: GPT-3.5 equivalent (175B parameters, 8-bit quantized, sparse) runs on high-end laptops (64GB RAM,
integrated GPU). Inference is slow (seconds per response) but functional. Privacy-conscious users adopt local
models for sensitive queries.

2028: GPT-4 equivalent (1T parameters, 4-bit quantized, sparse) runs on high-end laptops. Inference speed
approaches real-time (100ms per token). Smartphones begin running GPT-3.5 equivalent models. Local-first
AT becomes mainstream.

2030: GPT-4 equivalent runs on mid-range laptops and high-end smartphones. Inference is fast (10-50ms
per token). Edge devices (tablets, smart glasses) run GPT-3.5 equivalent models. Network dependence for
AT evaporates.

2035: Frontier-quality models (GPT-4 or better) run on all consumer devices. Watches, glasses, earbuds,
cars. Inference is near-instantaneous (1-10ms per token). Ambient intelligence: Al is everywhere, always
available, offline-capable, private.

This is not science fiction. It is the compounding of demonstrated efficiency trends. The physics allows it.
The engineering trajectory points toward it. The economic incentives demand it.

8.5 The neuromorphic wildcard

Everything discussed so far assumes digital von Neumann architecture. But biology achieves far greater
efficiency with analog computation and co-located memory. What if silicon could capture some of biology’s
efficiency advantages?

Neuromorphic inference: IBM’s NorthPole achieves 25x efficiency over GPUs for inference. Intel’s Loihi 2
demonstrates event-driven spiking networks with minimal idle power. These are inference accelerators, not
training platforms, but for frozen models, that is sufficient.
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Challenges remain. Neuromorphic chips are limited in capacity (NorthPole holds ~6B parameters). Scaling to
frontier model sizes requires multi-chip systems, which reintroduce communication overhead. Programming
models are immature. But the physics is favorable: analog computation operates closer to the Landauer limit.

Projection (speculative): If neuromorphic inference matures, it delivers an additional 10-100x efficiency
gain over digital inference. This is less certain than the other projections but physically plausible.

8.6 The compounding multipliers

Let us be conservative. Over 10-15 years: - Training efficiency: 100x (algorithmic 4+ hardware) - Quantization:
4x (8-bit standard, 4-bit for edge) - Sparsity: 5x (structured pruning) - Architecture: 5x (incremental
improvements) - Total inference: 4 x 5 x 5 = 100x

Conservative total: 100x training, 100x inference. A model that cost $100M to train and $0.05 per inference
in 2024 costs $1M to train and $0.0005 per inference in 2035.

Optimistic scenario: - Training efficiency: 1500x - Quantization: 8x (4-bit standard, 2-bit for edge) - Sparsity:
10x - Architecture: 10x - Neuromorphic: 10x (speculative) - Total inference: 8 x 10 x 10 x 10 = 8000x

Optimistic total: 1500x training, 8000x inference. A model that cost $100M to train and $0.05 per inference
costs $67K to train and $0.000006 per inference.

Even the conservative case puts frontier-quality models on laptops. The optimistic case puts them on watches.

This is the realistic horizon: not AGI, but stagnated frontier capabilities becoming universally accessible
through efficiency gains rather than capability scaling.

8.7 Chapter summary

o While frontier capability stagnates (Chapter 7), efficiency improvements will continue exponentially
over the next 10-15 years

o Training efficiency gains: 10-50x from algorithms (better architectures, optimizers, curriculum learning,
distillation), 10-30x from hardware (next-gen accelerators, neuromorphic approaches), conservative
total 100x

o Inference efficiency gains: 4-16x from quantization (8-bit standard, 4-bit for edge), 5-10x from sparsity,
5-20x from architectural improvements, conservative total 100x, optimistic 3200x

e From datacenter to device timeline: GPT-3.5 on laptops by 2026, GPT-4 on laptops by 2028, GPT-4
on smartphones by 2030, frontier quality on all devices by 2035

e Neuromorphic wildcard: IBM NorthPole achieves 25x efficiency over GPUs for inference; if scaled to
frontier models, could deliver additional 10-100x efficiency

o Compounding multipliers: conservative case (100x training, 100x inference) puts GPT-4 on laptops;
optimistic case (1500x training, 8000x inference) puts GPT-4 on watches

e The efficiency revolution delivers what capability scaling cannot: stagnated frontier quality becomes
accessible to everyone at near-zero marginal cost
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